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CHAPTER
ONE

AN OVERVIEW OF THE RDKIT

1.1 What is it?

1.1.1 Open source toolkit for cheminformatics

* Business-friendly BSD license

 Core data structures and algorithms in C++

* Python (2.x and 3.x) wrapper generated using Boost.Python
* Java and C# wrappers generated with SWIG

* 2D and 3D molecular operations

 Descriptor generation for machine learning

* Molecular database cartridge for PostgreSQL

e Cheminformatics nodes for KNIME (distributed from the KNIME community site: http://tech.knime.org/
community/rdkit)

1.1.2 Operational:

* http://www.rdkit.org

* Supports Mac/Windows/Linux

* Releases every 6 months

* Web presence:
— Homepage: http://www.rdkit.org Documentation, links
— Github (https://github.com/rdkit) Downloads, bug tracker, git repository
— Sourceforge (http://sourceforge.net/projects/rdkit) Mailing lists

* Mailing lists at https://sourceforge.net/p/rdkit/mailman/, searchable archives available for rdkit-discuss and
rdkit-devel

1.1.3 History:

* 2000-2006: Developed and used at Rational Discovery for building predictive models for ADME, Tox, biologi-
cal activity

* June 2006: Open-source (BSD license) release of software, Rational Discovery shuts down



http://tech.knime.org/community/rdkit
http://tech.knime.org/community/rdkit
http://www.rdkit.org
http://www.rdkit.org
https://github.com/rdkit
http://sourceforge.net/projects/rdkit
https://sourceforge.net/p/rdkit/mailman/
http://www.mail-archive.com/rdkit-discuss@lists.sourceforge.net/
http://www.mail-archive.com/rdkit-devel@lists.sourceforge.net/
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* to present: Open-source development continues, use within Novartis, contributions from Novartis back to open-
source version

1.2 Functionality overview

1.3 Basics

¢ Input/Output: SMILES/SMARTS, SDF, TDT, SLN /, Corina mol2 /, PDB, sequence notation, FASTA (peptides
only), HELM (peptides only)

* Substructure searching

* Canonical SMILES

e Chirality support (i.e. R/S or E/Z labeling)

¢ Chemical transformations (e.g. remove matching substructures)
* Chemical reactions

* Molecular serialization (e.g. mol \<-> text)

2D depiction, including constrained depiction

* Fingerprinting: Daylight-like, atom pairs, topological torsions, Morgan algorithm, “MACCS keys”, extended
reduced graphs, etc.

* Similarity/diversity picking

* Gasteiger-Marsili charges

* Bemis and Murcko scaffold determination
* Salt stripping

* Functional-group filters

1.3.1 2D

2D pharmacophores /

* Hierarchical subgraph/fragment analysis

* RECAP and BRICS implementations

¢ Multi-molecule maximum common substructure 2
* Enumeration of molecular resonance structures

* Molecular descriptor library:

 Topological (x3, Balaban J, etc.)

* Compositional (Number of Rings, Number of Aromatic Heterocycles, etc.)
¢ Electrotopological state (Estate)

* clogP, MR (Wildman and Crippen approach)

¢ “MOE like” VSA descriptors

* MQN 6

2 Chapter 1. An overview of the RDKit
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* Similarity Maps 7

* Machine Learning:

* Clustering (hierarchical, Butina)

¢ Information theory (Shannon entropy, information gain, etc.)

* Tight integration with the Jupyter notebook (formerly the IPython notebook) and Pandas.

1.3.2 3D

* 2D->3D conversion/conformational analysis via distance geometry, including optional use of experimental tor-
sion angle potentials.

* UFF and MMFF94/MMFF94S implementations for cleaning up structures

* Pharmacophore embedding (generate a pose of a molecule that matches a 3D pharmacophore) /
 Feature maps

 Shape-based similarity

* RMSD-based molecule-molecule alignment

» Shape-based alignment (subshape alignment 3) /

¢ Unsupervised molecule-molecule alignment using the Open3DAlign algorithm 4

* Integration with PyMOL for 3D visualization

* Molecular descriptor library:

* Feature-map vectors 5

* Torsion Fingerprint Differences for comparing conformations 8§

1.3.3 Integration with other open-source projects

o KNIME: Workflow and analytics tool
* Django: “The web framework for perfectionists with deadlines”
* PostgreSQL: Extensible relational database

* Lucene: Text-search engine /

1.4 The Contrib Directory

The Contrib directory, part of the standard RDKit distribution, includes code that has been contributed by members of
the community.

1.4.1 LEF: Local Environment Fingerprints

Contains python source code from the publications:

e A. Vulpetti, U. Hommel, G. Landrum, R. Lewis and C. Dalvit, “Design and NMR-based screening of LEF, a
library of chemical fragments with different Local Environment of Fluorine” J. Am. Chem. Soc. 131 (2009)
12949-12959. http://dx.doi.org/10.1021/ja905207t

1.4. The Contrib Directory 3


http://jupyter.org
http://pandas.pydata.org/
https://tech.knime.org/community/rdkit
http://django-rdkit.readthedocs.org/en/latest/
https://github.com/rdkit/rdkit/blob/master/Docs/Book/Cartridge.rst
https://github.com/rdkit/org.rdkit.lucene
http://dx.doi.org/10.1021/ja905207t
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* Vulpetti, G. Landrum, S. Ruedisser, P. Erbel and C. Dalvit, “19F NMR Chemical Shift Prediction with Fluorine
Fingerprint Descriptor” J. of Fluorine Chemistry 131 (2010) 570-577. http://dx.doi.org/10.1016/].jfluchem.
2009.12.024

Contribution from Anna Vulpetti

1.4.2 M_Kossner

Contains a set of pharmacophoric feature definitions as well as code for finding molecular frameworks.

Contribution from Markus Kossner

1.4.3 PBF: Plane of best fit

Contains C++ source code and sample data from the publication:

Firth, N. Brown, and J. Blagg, “Plane of Best Fit: A Novel Method to Characterize the Three-Dimensionality of
Molecules” Journal of Chemical Information and Modeling 52 2516-2525 (2012). http://pubs.acs.org/doi/abs/10.
1021/¢i300293f

Contribution from Nicholas Firth

1.4.4 mmpa: Matched molecular pairs
Python source and sample data for an implementation of the matched-molecular pair algorithm described in the pub-
lication:

Hussain, J., & Rea, C. “Computationally efficient algorithm to identify matched molecular pairs (MMPs) in large data
sets.” Journal of chemical information and modeling 50 339-348 (2010). http://dx.doi.org/10.1021/ci900450m

Includes a fragment indexing algorithm from the publication:

Wagener, M., & Lommerse, J. P. “The quest for bioisosteric replacements.” Journal of chemical information and
modeling 46 677-685 (2006).

Contribution from Jameed Hussain.

1.4.5 SA_Score: Synthetic assessibility score

Python source for an implementation of the SA score algorithm described in the publication:

Ertl, P. and Schuffenhauer A. “Estimation of Synthetic Accessibility Score of Drug-like Molecules based on Molecular
Complexity and Fragment Contributions” Journal of Cheminformatics 1:8 (2009)

Contribution from Peter Ertl

1.4.6 fraggle: A fragment-based molecular similarity algorithm

Python source for an implementation of the fraggle similarity algorithm developed at GSK and described in this RDKit
UGM presentation: https://github.com/rdkit/UGM_2013/blob/master/Presentations/Hussain.Fraggle.pdf

Contribution from Jameed Hussain

4 Chapter 1. An overview of the RDKit
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1.4.7 pzc: Tools for building and validating classifiers

Contribution from Paul Czodrowski

1.4.8 ConformerParser: parser for Amber trajectory files

Contribution from Sereina Riniker

1.4.9 NP_Score: Natural-product likeness score

Python source for an implementation of the NP score algorithm described in the publication:

s

“Natural Product Likeness Score and Its Application for Prioritization of Compound Libraries’
Peter Ertl, Silvio Roggo, and Ansgar Schuffenhauer

Journal of Chemical Information and Modeling 48:68-74 (2008)
http://pubs.acs.org/doi/abs/10.1021/ci700286x

Contribution from Peter Ertl

1.5 Footnotes

1: These implementations are functional but are not necessarily the best, fastest, or most complete.
2: Originally contributed by Andrew Dalke

3: Putta, S., Eksterowicz, J., Lemmen, C. & Stanton, R. “A Novel Subshape Molecular Descriptor” Journal of Chem-
ical Information and Computer Sciences 43:1623-35 (2003).

4: Tosco, P., Balle, T. & Shiri, F. “Open3DALIGN: an open-source software aimed at unsupervised ligand alignment.”
J Comput Aided Mol Des 25:777-83 (2011).

5: Landrum, G., Penzotti, J. & Putta, S. “Feature-map vectors: a new class of informative descriptors for computational
drug discovery” Journal of Computer-Aided Molecular Design 20:751-62 (2006).

6: Nguyen, K. T., Blum, L. C., van Deursen, R. & Reymond, J.-L. “Classification of Organic Molecules by Molecular
Quantum Numbers.” ChemMedChem 4:1803-5 (2009).

7: Riniker, S. & Landrum, G. A. “Similarity maps - a visualization strategy for molecular fingerprints and machine-
learning methods.” Journal of Cheminformatics 5:43 (2013).

8: Schulz-Gasch, T., Schirfer, C., Guba, W. & Rarey, M. “TFD: Torsion Fingerprints As a New Measure To Compare
Small Molecule Conformations.” J. Chem. Inf. Model. 52:1499-1512 (2012).

1.6 License

This document is copyright (C) 2013-2015 by Greg Landrum

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 543 Howard Street, Sth
Floor, San Francisco, California, 94105, USA.

1.5. Footnotes 5


http://pubs.acs.org/doi/abs/10.1021/ci700286x
http://creativecommons.org/licenses/by-sa/3.0/
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The intent of this license is similar to that of the RDKit itself. In simple words: “Do whatever you want with it, but
please give us some credit.”
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CHAPTER
TWO

INSTALLATION

Below a number of installation recipies is presented, with varying degree of complexity.

2.1 Cross-platform under anaconda python (fastest install)

2.1.1 Introduction to anaconda

Conda is an open-source, cross-platform, software package manager. It supports the packaging and distribution of
software components, and manages their installation inside isolated execution environments. It has several analogies
with pip and virtualenv, but it is designed to be more “python-agnostic” and more suitable for the distribution of binary
packages and their dependencies.

2.1.2 How to get conda
The easiest way to get Conda is having it installed as part of the Anaconda Python distribution. A possible (but a bit

more complex to use) alternative is provided with the smaller and more self-contained Miniconda. The conda source
code repository is available on github and additional documentation is provided by the project website.

2.1.3 How to install RDKit with Conda

Creating a new conda environment with the RDKit installed using these packages requires one single command similar
to the following:

$ conda create —-c https://conda.anaconda.org/rdkit -n my-rdkit-env rdkit

Finally, the new environment must be activated, so that the corresponding python interpreter becomes available in the
same shell:

$ source activate my-rdkit-env

If for some reason this does not work, try:

$ cd [anaconda folder]/bin
$ source activate my-rdkit-env

Windows users will use a slightly different command:

C:> activate my-rdkit-env



http://docs.continuum.io/anaconda/install.html
http://conda.pydata.org/miniconda.html
https://github.com/conda
http://conda.pydata.org/
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2.1.4 How to build from source with Conda

For more details on building from source with Conda, see the conda-rdkit repository

2.1.5 Installing and using PostgreSQL and the RDKit PostgreSQL cartridge from a
conda environment

Due to the conda python distribution being a different version to the system python, it is easiest to install PostgreSQL
and the PostgreSQL python client via conda.

With your environment activated, this is done simply by:

’conda install -c https://conda.binstar.org/rdkit rdkit-postgresqgl

The conda packages PostgreSQL version needs to be initialized by running the initdb command found in [conda
folder]/envs/my-rdkit-env/bin

’[conda folder]/envs/my-rdkit-env/bin/initdb -D /folder/where/data/should/be/stored

PostgreSQL can then be run from the terminal with the command:

’[conda folder]/envs/my-rdkit-env/bin/postgres -D /folder/where/data/should/be/stored

For most use cases you will instead need to run PostgreSQL as a daemon, one way to do this is using supervisor. You
can find out more and how to install supervisor here. The required configuration file will look something like this:

[program:postgresqgl]

command=[conda folder]/envs/my-rdkit-env/bin/postgres -D /folder/where/data/should/be/
—stored

user=[your username]

autorestart=true

Once PostgreSQL is up and running, all of the normal PostgreSQL commands can then be run when your conda
environment is activated. Therefore to create a database you can run:

createdb my_rdkit_db
psql my_rdkit_db
# create extension rdkit;

If you are trying to use multiple installations of PostgreSQL in different environments, you will need to setup different
pid files, unix sockets and ports by editing the PostgreSQL config files. With the above configurations these files can
be found in /folder/where/data/should/be/stored.

2.2 Linux and OS X

2.2.1 Installation from repositories

Ubuntu 12.04 and later

Thanks to the efforts of the Debichem team, RDKit is available via the Ubuntu repositories. To install:

sudo apt-get install python-rdkit librdkitl rdkit-data

8 Chapter 2. Installation


https://github.com/rdkit/conda-rdkit
http://supervisord.org/
https://opensourcedbms.com/dbms/running-multiple-postgresql-9-2-instances-on-one-server-in-centos-6rhel-6fedora/

RDKit Documentation, Release 2016.03.1

Fedora, CentOS, and RHEL

Gianluca Sforna creates binary RPMs that can be found here: http://giallu.fedorapeople.org/rdkit-20XX. XX/

oS X

Eddie Cao has produced a homebrew formula that can be used to easily build the RDKit https://github.com/rdkit/
homebrew-rdkit

2.2.2 Building from Source
Prerequisites

Installing prerequisites as packages

Ubuntu and other debian-derived systems

Install the following packages using apt-get:

build-essential python-numpy cmake python-dev sqglite3 libsglite3-dev libboost-dev,,
—libboost-system-dev libboost-thread-dev libboost-serialization-dev libboost-python-
—~dev libboost-regex-dev

Fedora, CentOS (5.7+), and RHEL

Install the following packages using yum:

cmake tk-devel readline-devel zlib-devel bzip2-devel sglite-devel @development-tools

Packages to install from source (not required on RHEL/CentOS 6.x):
e python 2.7 : use . /configure CFLAGS=-fPIC —--enable-unicode=ucs4 --enable-shared

e numpy : do export LD\_LIBRARY\_PATH="/usr/local/lib" before python setup.py
install

¢ boost 1.48.0 or later: do ./bootstrap.sh —--with-libraries=python, regex; ./b2; ./b2
install

Older versions of CentOS

Here things are more difficult. Check this wiki page for information: https://code.google.com/p/rdkit/wiki/
BuildingOnCentOS

Installing prerequisites from source

* Required packages:

* cmake. You need version 2.6 (or more recent). http://www.cmake.org if your linux distribution doesn’t have an
appropriate package.

> x4+notex*x*

>

> It seems that v2.8 is a better bet than v2.6. It might be worth compiling your,
—own copy of v2.8 even if v2.6 is already installed.
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* The following are required if you are planning on using the Python wrappers

— The python headers. This probably means that you need to install the python-dev package (or whatever
it’s called) for your linux distribution.

— sqlite3. You also need the shared libraries. This may require that you install a sqlite3-dev package.
— You need to have numpy (http://www.scipy.org/NumPy) installed.
note

for building with XCode4 on OS X there seems to be a problem with the version of numpy that
comes with XCode4. Please see below in the (see faq) section for a workaround.

Installing Boost

If your linux distribution has a boost-devel package including the python, regex, threading, and serialization libraries,
you can use that and save yourself the steps below.

note

if you do have a version of the boost libraries pre-installed and you want to use your own version, be
careful when you build the code. We’ve seen at least one example on a Fedora system where cmake
compiled using a user-installed version of boost and then linked against the system version. This led to
segmentation faults. There is a workaround for this below in the (see FAQ) section.

* download the boost source distribution from the boost web site

* extract the source somewhere on your machine (e.g. /usr/local/src/boost_1_58_0)

* build the required boost libraries. The boost site has detailed instructions for this, but here’s an overview:

* cd $BOOST

¢ If you want to use the python wrappers: . /bootstrap.sh —-with-libraries=python, regex, thread, serializ
¢ Ifnot using the python wrappers: . /bootstrap.sh --with-libraries=regex,thread,serialization

e ./b2 install

If you have any problems with this step, check the boost installation instructions.

Building the RDKit

Fetch the source, here as tar.gz but you could use git as well:

wget https://github.com/rdkit/rdkit/archive/Release_XXXX_XX_X.tar.gz

* Ensure that the prerequisites are installed
* environment variables:
— RDBASE: the root directory of the RDKit distribution (e.g. ~/RDKit)

Linux: LD_LIBRARY_PATH: make sure it includes SRDBASE/lib and wherever the boost shared libraries
were installed

OS X: DYLD_LIBRARY_PATH: make sure it includes $SRDBASE/lib and wherever the boost shared
libraries were installed

The following are required if you are planning on using the Python wrappers:
— PYTHONPATH: make sure it includes SRDBASE
* Building:
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* cd to SRDBASE
e mkdir build
e cd build

e cmake .. : See the section below on configuring the build if you need to specify a non-default version of
python or if you have boost in a non-standard location

* make : this builds all libraries, regression tests, and wrappers (by default).
* make install

See below for a list of FAQ and solutions.

Testing the build (optional, but recommended)
¢ cd to SRDBASE/build and do ctest
 you’re done!

Advanced

Specifying an alternate Boost installation

You need to tell cmake where to find the boost libraries and header files:

If you have put boost in /opt/local, the cmake invocation would look like:

cmake —-DBOOST_ROOT=/opt/local ..

Note that if you are using your own boost install on a system with a system install, it’s normally a good idea to also
include the argument -D Boost_NO_SYSTEM_PATHS=O0N in your cmake command.

Specifying an alternate Python installation

If you aren’t using the default python installation for your computer, You need to tell cmake where to find the python
library it should link against and the python header files.

Here’s a sample command line:

cmake -D PYTHON_LIBRARY=/usr/lib/python2.7/config/libpython2.7.a -D PYTHON_INCLUDE_
—DIR=/usr/include/python2.7/ -D PYTHON_EXECUTABLE=/usr/bin/python ..

The PYTHON_EXECUTABLE part is optional if the correct python is the first version in your PATH.

Disabling the Python wrappers

You can completely disable building of the python wrappers:

cmake —-DRDK_BUILD_PYTHON_WRAPPERS=OFF ..
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Recommended extras

* You can enable support for generating InChl strings and InChl keys by adding the argument
-DRDK_BUILD_INCHI_SUPPORT=ON to your cmake command line.

* You can enable support  for  the Avalon  toolkit by adding the argument
-DRDK_BUILD_AVALON_SUPPORT=ON to your cmake command line.

* If you’d like to be able to generate high-quality PNGs for structure depiction cairo (for use with Python2) or
cairocffi (for use with Python3) and their respective Python bindings are recommended.

Building the Java wrappers

Additional Requirements
e SWIG v2.0.x: http://www.swig.org
Building

e When you invoke cmake add -D RDK_BUILD_SWIG_WRAPPERS=ON to the arguments. For example:
cmake -D RDK_BUILD_SWIG_WRAPPERS=ON

¢ Build and install normally using make. The directory SRDBASE/Code/JavaWrappers/gmwrapper will
contain the three required files: libGraphMolWrap.so (libGraphMolWrap.jnilib on OS X), org.RDKit.jar, and
org.RDKitDoc.jar.

Using the wrappers

To use the wrappers, the three files need to be in the same directory, and that should be on your CLASSPATH and in
the java.library.path. An example using jython:

% CLASSPATH=S$CLASSPATH:S$RDBASE/Code/JavaWrappers/gmwrapper/org.RDKit. jar; jython -
—Djava.library.path=$RDBASE/Code/JavaWrappers/gmwrapper

Jython 2.2.1 on javal.6.0_20

Type "copyright", "credits" or "license" for more information.

>>> from org.RDKit import =

>>> from java import lang

>>> lang.System.loadLibrary ('GraphMolWrap"')

>>> m = RWMol.MolFromSmiles ('clccceccl')

>>> m.getNumAtoms ()

6L

Optional packages
e If you would Ilike to install the RDKit InChl support, follow the instructions in

SRDBASE/External/INCHI-API/README.

e If you would like to install the RDKit Avalon toolkit support, follow the instructions in
SRDBASE/External/AvalonTool/README.

e If you would like to build and install the PostgreSQL cartridge, follow the instructions in
SRDBASE/Code/PgSQL/rdkit /README

Frequently Encountered Problems

In each case I've replaced specific pieces of the path with . . ..
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Problem: :

Linking CXX shared library libSLNParse.so

/usr/bin/1ld: .../libboost_regex.a (cpp_regex_traits.o): relocation R_X86_64_32S |
—against “std::basic_string<char, std::char_traits<char>, std::allocator<char> >::_
—Rep::_S_empty_rep_storage' can not be used when making a shared object; recompile
—with -fPIC

.../libboost_regex.a: could not read symbols: Bad value

collect2: 1d returned 1 exit status

make[2]: xx* [Code/GraphMol/SLNParse/libSLNParse.so] Error 1

make[l]: xx* [Code/GraphMol/SLNParse/CMakeFiles/SLNParse.dir/all] Error 2

make: *%x [all] Error 2

Solution:
Add this to the arguments when you call cmake: ~-DBoost_USE_STATIC_LIBS=0OFF

More information here: http://www.mail-archive.com/rdkit-discuss @lists.sourceforge.net/msg01119.html

Problem: :

.../Code/GraphMol/Wrap/EditableMol.cpp:114: instantiated from here
.../boost/type_traits/detail/cv_traits_impl.hpp:37: internal compiler error: in make_
—rtl_for_nonlocal_decl, at cp/decl.c:5067

Please submit a full bug report, with preprocessed source if appropriate. See \<URL:
—<http://bugzilla.redhat.com/bugzilla>\> for instructions. Preprocessed source,,

—stored into /tmp/ccgSaXge.out file, please attach this to your bugreport. make[2]:
—*x\* [Code/GraphMol/Wrap/CMakeFiles/rdchem.dir/EditableMol.cpp.o] Error 1 make[l]:
—*+x\* [Code/GraphMol/Wrap/CMakeFiles/rdchem.dir/all] Error 2 make: x\x% [all] Error 2

—

Solution:
Add #define BOOST_PYTHON_NO_PY_SIGNATURES atthetop of Code/GraphMol/Wrap/EditableMol.cpp

More information here: http://www.mail-archive.com/rdkit-discuss @lists.sourceforge.net/msg01178.html

Problem:

Your system has a version of boost installed in /usr/lib, but you would like to force the RDKit to use a more recent
one.

Solution:

This can be solved by using cmake version 2.8.3 (or more recent) and providing the -D
Boost_NO_SYSTEM_PATHS=ON argument:

cmake -D BOOST_ROOT=/usr/local -D Boost_NO_SYSTEM_PATHS=O0ON

Problem:
Building on OS X with XCode 4

The problem seems to be caused by the version of numpy that is distributed with XCode 4, so you need to build a fresh
copy.

Solution: Get a copy of numpy and build it like this as root: as root:
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export MACOSX_DEPLOYMENT_TARGET=10.6

export LDFLAGS="-Wall -undefined dynamic_lookup -bundle -—-arch x86_64"
export CFLAGS="-arch x86_64"

In -s /usr/bin/gcc /usr/bin/gcc-4.2

1In -s /usr/bin/g++ /usr/bin/g++-4.2

python setup.py build

python setup.py install

Be sure that the new numpy is used in the build:

’PYTHON_NUMPY_INCLUDE_PATH /Library/Python/2.6/site-packages/numpy/core/include

and is at the beginning of the PYTHONPATH:

’export PYTHONPATH="/Library/Python/2.6/site-packages: SPYTHONPATH"

Now it’s safe to build boost and the RDKit.

2.3 Windows

2.3.1 Prerequisites

e Python 2.7 or 3.4+ (from http://www.python.org/)

* numpy (from http:/numpy.scipy.org/ or use pip install numpy). Binaries for win64 are available here:
http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy

e Pillow: (from https://python-pillow.github.io/>or use pip install Pillow)

Recommended extras

e aggdraw: a library for high-quality drawing in Python. Instructions for downloading are here: http://effbot.
org/zone/aggdraw-index.htm The new (as of May 2008) drawing code has been tested with v1.2a3 of aggdraw.
Despite the alpha label, the code is stable and functional.

» matplotlib: a library for scientific plotting from Python. http://matplotlib.sourceforge.net/
* ipython : a very useful interactive shell (and much more) for Python. http://ipython.scipy.org/dist/

— win32all: Windows extensions for Python. http://sourceforge.net/projects/pywin32/

2.3.2 Installation of RDKit binaries

* Get the appropriate windows binary build from: https://github.com/rdkit/rdkit/releases
* Extract the zip file somewhere without a space in the name, i.e. C: \

¢ The rest of this will assume that the installation is in C: \RDKit_2015_09_2

Set the following environment variables:
*« RDBASE: C:\RDKit_2015_09_2
PYTHONPATH: $RDBASES$ if there is already a PYTHONPATH, put ; $RDBASE$ at the end.

PATH: add ; $RDBASE%\1ib to the end
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In Win7 systems, you may run into trouble due to missing DLLs, see one thread from the mailing list: http:
/lwww.mail-archive.com/rdkit-discuss @lists.sourceforge.net/msg01632.html You can download the missing DLLs
from here: http://www.microsoft.com/en-us/download/details.aspx?1d=5555

2.3.3 Installation from source

Extra software to install

* Microsoft Visual C++ : The Community version has everything necessary and can be downloaded for free

(https://www.visualstudio.com/en-us/products/visual-studio-community-vs.aspx). This is a big installation and
will take a while. The RDKit has been successfully built with all version of Visual C++ since 6.0, so the current
version of VC++ (2015 as of this writing) should be fine.

cmake : (http://www.cmake.org/cmake/resources/software.html) should be installed.

boost : It is strongly recommended to download and use a precompiled version of the boost libraries from
http://sourceforge.net/projects/boost/files/boost-binaries/ . When you run the installer, the only binary libraries
you need are python, regex, and system. If you want to install boost from source, download a copy from
http://www.boost.org and follow the instructions in the “Getting Started” section of the documentation. Make
sure the libraries and headers are installed to C:\boost

a git client : This is only necessary if you are planning on building development versions of the RDKit. This
can be downloaded from http://git-scm.com/downloads; git is also included as an optional add-on of Microsoft
Visual Studio 2015.

Setup and Preparation

This section assumes that python is installed in C:\Python27, that the boost libraries have been installed to
C:\boost, and that you will build the RDKit from a directory named C: \RDKit. If any of these conditions is
not true, just change the corresponding paths.

If you install things in paths that have spaces in their names, be sure to use quotes properly in your environment
variable definitions.

If you are planning on using a development version of the RDKit: get a copy of the current
RDKit source using git. If you’re using the command-line client the command is: git clone
https://github.com/rdkit/rdkit.git C:\RDKit

If you are planning on using a released version of the RDKit: get a copy of the most recent release and extract
it into the directory C: \RDKit

Set the required environment variables:

RDBASE = C:\RDKit

Make sure C: \Python27 is in your PATH

Make sure C: \RDKit\1ib is in your PATH

Make sure C: \boost\1ib isin your PATH.
Make sure C: \RDKit 1is in your PYTHONPATH

Building from the command line (recommended)

Create a directory C: \RDKit\build and cd into it
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* Run cmake. Here’s an example basic command line for 64bit windows that will down-

load the InChl and Avalon toolkit sources from the InChl Trust and SourceForge reposi-
tories, respectively, and build the PostgreSQL cartridge for the installed version of Post-
greSQL: cmake —DRDK_BUILD_PYTHON_WRAPPERS=ON -DBOOST_ROOT=C:/boost
—DRDK_BUILD_INCHI_SUPPORT=ON -DRDK_BUILD_AVALON_SUPPORT=0ON
—-DRDK_BUILD_PGSQL=0N -DPostgreSQL_ROOT="C:\Program Files\PostgreSQL\9.5"
-G"Visual Studio 14 2015 Win64"

* Build the code. Here’s an example command line: C: /Windows/Microsoft .NET/Framework64/v4.0

/m:4 /p:Configuration=Release INSTALL.VCXpProj

¢ If you have built in PostgreSQL support, you will need to open a shell with administrator privileges, stop the

PostgreSQL service, run the pgsgl_install.bat installation script, then restart the PostgreSQL service
(please refer to $RDBASE$\Code\PgSQL\rdkit \README for further details):

— "C:\Program Files\PostgreSQL\9.5\bin\pg_ctl.exe" -N "postgresgl-9.5"
-D "C:\Program Files\PostgreSQL\9.5\data" -w stop

— C:\RDKit\build\Code\PgSQL\rdkit\pgsgl_install.bat

— "C:\Program Files\PostgreSQL\9.5\bin\pg_ctl.exe" -N "postgresqgl-9.5"
-D "C:\Program Files\PostgreSQL\9.5\data" -w start

— Before restarting the PostgreSQL service, make sure that the Boost libraries the RDKit was built
against are in the system PATH, or PostgreSQL will fail to create the rdkit extension with
a deceptive error message such as: ERROR: could not load library "C:/Program
Files/PostgreSQL/9.5/1ib/rdkit.d11l": The specified module could not
be found.

Testing the Build (optional, but recommended)

e cdto C:\RDKit\build and run ctest. Please note that if you have built in PostgreSQL support, the current
logged in user needs to be a PostgreSQL user with database creation and superuser privileges, or the PostgreSQL
test will fail. A convenient option to authenticate will be to set the PGPASSWORD environment variable to the
PostgreSQL password of the current logged in user in the shell from which you are running ctest.

¢ You're done!

2.4 License

This document is copyright (C) 2012-2015 by Greg Landrum

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 543 Howard Street, Sth
Floor, San Francisco, California, 94105, USA.

The intent of this license is similar to that of the RDKit itself. In simple words: “Do whatever you want with it, but

please give us some credit.”
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CHAPTER
THREE

GETTING STARTED WITH THE RDKIT IN PYTHON

3.1 What is this?

This document is intended to provide an overview of how one can use the RDKit functionality from Python. It’s not

comprehensive and it’s not a manual.

If you find mistakes, or have suggestions for improvements, please either fix them yourselves in the source document

(the .rst file) or send them to the mailing list: rdkit-devel @lists.sourceforge.net

3.2 Reading and Writing Molecules

3.2.1 Reading single molecules

The majority of the basic molecular functionality is found in module rdkit.Chem:

>>> from __ future  import print_function
>>> from rdkit import Chem

Individual molecules can be constructed using a variety of approaches:

>>> m = Chem.MolFromSmiles ('Cclcccccl')

>>> m = Chem.MolFromMolFile ('data/input.mol")

>>> stringWithMolData=open ('data/input.mol', 'r'") .read()
>>> m = Chem.MolFromMolBlock (stringWithMolData)

All of these functions return a Mol object on success:

>>> m
<rdkit.Chem.rdchem.Mol object at O0x...>

or None on failure:

>>> m = Chem.MolFromMolFile('data/invalid.mol")
>>> m is None
True

An attempt is made to provide sensible error messages:

>>> ml = Chem.MolFromSmiles ('CO(C)C")

displays a message like: [12:18:01] Explicit valence for atom # 1 O greater than

permitted and

17
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>>> m2 = Chem.MolFromSmiles ('clccl'")

displays something like: [12:20:41] Can't kekulize mol. In each case the value None is returned:

>>> ml is None
True
>>> m2 is None
True

3.2.2 Reading sets of molecules

Groups of molecules are read using a Supplier (for example, an SDMolSupplier or a SmilesMolSupplier):

>>> suppl = Chem.SDMolSupplier ('data/5ht31ligs.sdf")
>>> for mol in suppl:
print (mol.GetNumAtoms () )
20
24

24
26

You can easily produce lists of molecules from a Supplier:

>>> mols = [x for x in suppl]
>>> len (mols)
4

or just treat the Supplier itself as a random-access object:

>>> suppl[0].GetNumAtoms ()
20

A good practice is to test each molecule to see if it was correctly read before working with it:

>>> suppl = Chem.SDMolSupplier ('data/5ht31ligs.sdf")
>>> for mol in suppl:
if mol is None: continue
print (mol.GetNumAtoms ())
20
24

24
26

An alternate type of Supplier, the ForwardSDMolSupplier can be used to read from file-like objects:

>>> inf = open('data/5ht3ligs.sdf', 'rb"')
>>> fsuppl = Chem.ForwardSDMolSupplier (inf)
>>> for mol in fsuppl:

if mol is None: continue

print (mol.GetNumAtoms ())
20
24
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24
26

This means that they can be used to read from compressed files:

>>> import gzip

>>> inf = gzip.open('data/actives_b5ht3.sdf.gz")
>>> gzsuppl = Chem.ForwardSDMolSupplier (inf)
>>> ms = [x for x in gzsuppl if x is not None]
>>> len (ms)

180

Note that ForwardSDMolSuppliers cannot be used as random-access objects:

>>> fsuppl[0]
Traceback (most recent call last):

TypeError: 'ForwardSDMolSupplier' object does not support indexing

3.2.3 Writing molecules

Single molecules can be converted to text using several functions present in the rdkit.Chem module.

For example, for SMILES:

>>> m = Chem.MolFromMolFile ('data/chiral.mol")
>>> Chem.MolToSmiles (m)

'CC(0O)clcceceel!

>>> Chem.MolToSmiles (m, isomericSmiles=True)
'C[C@H] (O)clcccceel!

Note that the SMILES provided is canonical, so the output should be the same no matter how a particular molecule is
input:

>>> Chem.MolToSmiles (Chem.MolFromSmiles ('C1=CC=CN=C1"))

'clccnecel!
>>> Chem.MolToSmiles (Chem.MolFromSmiles ('clcccncl'))
'clccnecel!
>>> Chem.MolToSmiles (Chem.MolFromSmiles ('nlcccccl'))
'clccnecel!

If you’d like to have the Kekule form of the SMILES, first Kekulize the molecule, then use the “kekuleSmiles” option:

>>> Chem.Kekulize (m)
>>> Chem.MolToSmiles (m, kekuleSmiles=True)
'CC(0O)Cl=CC=CC=C1"

Note: as of this writing (Aug 2008), the smiles provided when one requests kekuleSmiles are not canonical. The
limitation is not in the SMILES generation, but in the kekulization itself.

MDL Mol blocks are also available:

>>> m2 = Chem.MolFromSmiles ('CICCC1")
>>> print (Chem.MolToMolBlock (m2))

RDKit
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4 4 0 0O O O O 0 O 0999 v2000
0.0000 0.0000 0.0000 C o 0o 0o o0 0 o O o0 o 0 0 O
0.0000 0.0000 0.0000 C o 0 0 o o O o o o 0 o0 o0
0.0000 0.0000 0.0000 C o 0 0o o o o o o o 0 0 0
0.0000 0.0000 0.0000 C o 0o 0o o0 o0 o O o0 o 0 0 O
1 2 1 0
2 3 1 0
3 4 1 0
4 1 1 0
M END
To include names in the mol blocks, set the molecule’s “_Name” property:
>>> m2.SetProp ("_Name", "cyclobutane")
>>> print (Chem.MolToMolBlock (m2))
cyclobutane
RDKit
4 4 0 0 O O O 0 O 0999 v2000
0.0000 0.0000 0.0000 C o 0 0o o o o o o o 0 o0 O
0.0000 0.0000 0.0000 C o 0o 0o o0 o0 o 0 o o 0 0 O
0.0000 0.0000 0.0000 C o 0 0 o o o o o o 0 o0 0
0.0000 0.0000 0.0000 C o 0 o o o o o o o 0 0 O
1 2 1 0
2 3 1 0
3 4 1 0
4 1 1 0
M END

It’s usually preferable to have a depiction in the Mol block, this can be generated using functionality in the rd-
kit.Chem.AllChem module (see the Chem vs AllChem section for more information).

You can either include 2D coordinates (i.e. a depiction):

>>> from rdkit.Chem import AllChem
>>> AllChem.Computez2DCoords (m2)
0
>>> print (Chem.MolToMolBlock (m2))
cyclobutane

RDKit 2D

4 4 0 0O 0O 0O O O 0 0999 v2000

1.0607 -0.0000 0.0000 C o 0o o o0 o0 o 0 o0 o 0 0 O
-0.0000 -1.0607 0.0000 C o 0 o0 o0 o0 o o0 0 o o 0 O
-1.0607 0.0000 0.0000 C o o o o0 o0 o 0 o o 0 0 O

0.0000 1.0607 0.0000 C o o o o0 o0 o 0 o0 o 0 0 O

1 2 1 0

2 3 1 0

3 4 1 O

4 1 1 0
M END

Or you can add 3D coordinates by embedding the molecule:

>>> AllChem.EmbedMolecule (m2)

0

>>> AllChem.UFFOptimizeMolecule (m2)
0
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>>> print (Chem.MolToMolBlock (m2))
cyclobutane
RDKit 3D

4 4 0 O 0O 0O O O 0 0999 v2000

-0.7883 0.5560 -0.2718 C o o o o0 o0 o 0 o0 o 0 0 O
-0.4153 -0.9091 -0.1911 C o o o o0 o0 o 0 o0 o 0 0 O
0.7883 -0.5560 0.6568 C o 0 0 o o0 o o0 0 o o 0 O
0.4153 0.9091 0.5762 C o o o o0 o0 o 0 o o 0 0 O

1 2 1 O

2 3 1 0

3 4 1 0

4 1 1 O

M END

The optimization step isn’t necessary, but it substantially improves the quality of the conformation.

To get good conformations, it’s almost always a good idea to add hydrogens to the molecule first:

>>> m3 = Chem.AddHs (m2)

>>> AllChem.EmbedMolecule (m3)

0

>>> AllChem.UFFOptimizeMolecule (m3)
0

These can then be removed:

>>> m3 = Chem.RemoveHs (m3)
>>> print (Chem.MolToMolBlock (m3))
cyclobutane

RDKit 3D

4 4 0 0 0 O O O 0O 0999 vz000

0.2851 1.0372 -0.0171 C o o o0 o0 o0 o o0 o0 o 0 0 O
1.0352 -0.2833 0.0743 C o 0 o0 o o0 o o0 0 o o 0 O
-0.2851 -1.0372 0.0171 C o o o o0 o0 o 0 o o 0 0 O
-1.0352 0.2833 -0.0743 C o o0 o0 o0 0 o 0 o0 o 0 0 O
1 2 1 0
2 3 1 0
3 4 1 0
4 1 1 O
M END

If you’d like to write the molecules to a file, use Python file objects:

>>> print (Chem.MolToMolBlock (m2),file=open('data/foo.mol', "w+"))
>>>

3.2.4 Writing sets of molecules

Multiple molecules can be written to a file using an SDWriter object:

>>> w = Chem.SDWriter ('data/foo.sdf")
>>> for m in mols: w.write (m)

>>>
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An SDWriter can also be initialized using a file-like object:

>>> from rdkit.six import StringIO
>>> sio = StringIO()

>>> w = Chem.SDWriter (sio)

>>> for m in mols: w.write (m)

>>> w.flush()
>>> print (sio.getvalue())
mol-295

RDKit 3D

2022 0 0 1 O O O O 0999 vz000

2.3200 0.0800 -0.1000 C o 0 o0 o0 o0 o o0 0 o o 0 O
1.8400 -1.2200 0.1200 C o o o o0 o0 o 0 o o 0 0 O
1 3 1 0
1 4 1 O
2 5 1 0
M END

EEER

Other available Writers include the SmilesWriter and the TDTWriter.

3.3 Working with Molecules

3.3.1 Looping over Atoms and Bonds

Once you have a molecule, it’s easy to loop over its atoms and bonds:

>>> m = Chem.MolFromSmiles ('C10C1")
>>> for atom in m.GetAtoms () :
print (atom.GetAtomicNum() )

6

8

6

>>> print (m.GetBonds () [0] .GetBondType () )
SINGLE

You can also request individual bonds or atoms:

>>> m.GetAtomWithIdx (0) .GetSymbol ()

ICI

>>> m.GetAtomWithIdx (0) .GetExplicitValence ()
2

>>> m.GetBondWithIdx (0) .GetBeginAtomIdx ()

0

>>> m.GetBondWithIdx (0) .GetEndAtomIdx ()

1

>>> m.GetBondBetweenAtoms (0, 1) .GetBondType ()
rdkit.Chem.rdchem.BondType.SINGLE

Atoms keep track of their neighbors:

22 Chapter 3. Getting Started with the RDKit in Python




RDKit Documentation, Release 2016.03.1

>>> gtom = m.GetAtomWithIdx (0)

>>> [x.GetAtomicNum() for x in atom.GetNeighbors ()]
[8, 6]

>>> len (atom.GetNeighbors () [-1].GetBonds())

3.3.2 Ring Information

Atoms and bonds both carry information about the molecule’s rings:

>>> m = Chem.MolFromSmiles ('OC1C2C1CC2")
>>> m.GetAtomWithIdx (0) .IsInRing()

False

>>> m.GetAtomWithIdx (1) .IsInRing ()

True

>>> m.GetAtomWithIdx (2) .IsInRingSize (3)
True

>>> m.GetAtomWithIdx (2) .IsInRingSize (4)
True

>>> m.GetAtomWithIdx (2) .IsInRingSize (5)
False

>>> m.GetBondWithIdx (1) .IsInRingSize (3)
True

>>> m.GetBondWithIdx (1) .IsInRing()

True

But note that the information is only about the smallest rings:

>>> m.GetAtomWithIdx (1) .IsInRingSize (5)
False

More detail about the smallest set of smallest rings (SSSR) is available:

>>> ssr = Chem.GetSymmSSSR (m)
>>> len(ssr)

2

>>> 1list (ssr[0])

(1, 2, 3]

>>> list(ssr[l])

(4, 5, 2, 3]

As the name indicates, this is a symmetrized SSSR; if you are interested in the number of “true” SSSR, use the
GetSSSR function.

>>> Chem.GetSSSR (m)
2

The distinction between symmetrized and non-symmetrized SSSR is discussed in more detail below in the section 7he
SSSR Problem.

For more efficient queries about a molecule’s ring systems (avoiding repeated calls to Mol.GetAtomWithIdx), use the
RinglInfo class:

>>> m = Chem.MolFromSmiles ('OCI1C2C1CC2")
>>> ri = m.GetRingInfo()
>>> ri. NumAtomRings (0)

3.3. Working with Molecules 23




RDKit Documentation, Release 2016.03.1

>>> ri.NumAtomRings (1)
>>> ri.NumAtomRings (2)

>>> ri.IsAtomInRingOfSize (1, 3)
True
>>> ri.IsBondInRingOfSize (1, 3)
True

3.3.3 Modifying molecules

Normally molecules are stored in the RDKit with the hydrogen atoms implicit (e.g. not explicitly present in the
molecular graph. When it is useful to have the hydrogens explicitly present, for example when generating or optimizing
the 3D geometry, the AddHs function can be used:

>>> m=Chem.MolFromSmiles ('CCO")
>>> m.GetNumAtoms ()

3

>>> m2 = Chem.AddHs (m)

>>> m2.GetNumAtoms ()

The Hs can be removed again using the RemoveHs function:

>>> m3 = Chem.RemoveHs (m2)
>>> m3.GetNumAtoms ()
3

RDKit molecules are usually stored with the bonds in aromatic rings having aromatic bond types. This can be changed
with the Kekulize function:

>>> m = Chem.MolFromSmiles ('clcccccl!')
>>> m.GetBondWithIdx (0) .GetBondType ()
rdkit.Chem.rdchem.BondType.AROMATIC
>>> Chem.Kekulize (m)

>>> m.GetBondWithIdx (0) .GetBondType ()
rdkit.Chem.rdchem.BondType.DOUBLE

>>> m.GetBondWithIdx (1) .GetBondType ()
rdkit.Chem.rdchem.BondType.SINGLE

The bonds are still marked as being aromatic:

>>> m.GetBondWithIdx (1) .GetIsAromatic ()
True

and can be restored to the aromatic bond type using the SanitizeMol function:

>>> Chem.SanitizeMol (m)
rdkit.Chem.rdmolops.SanitizeFlags.SANITIZE_NONE
>>> m.GetBondWithIdx (0) .GetBondType ()
rdkit.Chem.rdchem.BondType.AROMATIC

The value returned by SanitizeMol() indicates that no problems were encountered.
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3.3.4 Working with 2D molecules: Generating Depictions

The RDKit has a library for generating depictions (sets of 2D) coordinates for molecules. This library, which is part
of the AllChem module, is accessed using the Compute2DCoords function:

>>> m = Chem.MolFromSmiles ('clnccc2nlccc2'")
>>> AllChem.Compute2DCoords (m)
0

The 2D conformation is constructed in a canonical orientation and is built to minimize intramolecular clashes, i.e. to
maximize the clarity of the drawing.

If you have a set of molecules that share a common template and you’d like to align them to that template, you can do
so as follows:

>>> template = Chem.MolFromSmiles ('clnccc2nlccc2'")
>>> AllChem.Compute2DCoords (template)
0

>>> AllChem.GenerateDepictionMatching2DStructure (m, template)

Running this process for a couple of other molecules gives the following depictions:

o A .
\\/ \ 7
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Another option for Compute2DCoords allows you to generate 2D depictions for molecules that closely mimic 3D
conformations. This is available using the function GenerateDepictionMatching3DStructure.

Here is an illustration of the results using the ligand from PDB structure 1XPO0:

More fine-grained control can be obtained using the core function Compute2DCoordsMimicDistmat, but that is beyond
the scope of this document. See the implementation of GenerateDepictionMatching3DStructure in AllChem.py for an
example of how it is used.
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3.3.5 Working with 3D Molecules

The RDKit can generate conformations for molecules using distance geometry. ' The algorithm followed is:
1. The molecule’s distance bounds matrix is calculated based on the connection table and a set of rules.
2. The bounds matrix is smoothed using a triangle-bounds smoothing algorithm.
3. A random distance matrix that satisfies the bounds matrix is generated.
4. This distance matrix is embedded in 3D dimensions (producing coordinates for each atom).
5. The resulting coordinates are cleaned up somewhat using a crude force field and the bounds matrix.

Multiple conformations can be generated by repeating steps 4 and 5 several times, using a different random distance
matrix each time.

Note that the conformations that result from this procedure tend to be fairly ugly. They should be cleaned up using a
force field. This can be done within the RDKit using its implementation of the Universal Force Field (UFF).

The full process of embedding and optimizing a molecule is easier than all the above verbiage makes it sound:

>>> m = Chem.MolFromSmiles ('Cl1CCC10C")
>>> m2=Chem.AddHs (m)

>>> AllChem.EmbedMolecule (m2)

0

>>> AllChem.UFFOptimizeMolecule (m2)

0

The RDKit also has an implementation of the MMFF94 force field available. '>, '3, 14 15 16 Please note that the
MMFF atom typing code uses its own aromaticity model, so the aromaticity flags of the molecule will be modified
after calling MMFF-related methods.

>>> m = Chem.MolFromSmiles ('C1CCC10OC")
>>> m2=Chem.AddHs (m)

>>> AllChem.EmbedMolecule (m2)

0

>>> AllChem.MMFFOptimizeMolecule (m2)

Note the calls to Chem.AddHs() in the examples above. By default RDKit molecules do not have H atoms explicity
present in the graph, but they are important for getting realistic geometries, so they generally should be added.

With the RDKit, also multiple conformers can be generated. The option numConfs allows the user to set the number of
conformers that should be generated. These conformers can be aligned to each other and the RMS values calculated.

>>> m = Chem.MolFromSmiles ('CI1CCCI10OC")

>>> m2=Chem.AddHs (m)

>>> cids = AllChem.EmbedMultipleConfs (m2, numConfs=10)
>>> print (len(cids))

! Blaney, J. M.; Dixon, J. S. “Distance Geometry in Molecular Modeling”. Reviews in Computational Chemistry; VCH: New York, 1994.

2 Rappé, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard III, W. A.; Skiff, W. M. “UFF, a full periodic table force field for molecular mechanics
and molecular dynamics simulations”. J. Am. Chem. Soc. 114:10024-35 (1992) .

12 Halgren, T. A. “Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94.” J. Comp. Chem.
17:490-19 (1996).

13 Halgren, T. A. “Merck molecular force field. Il. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions.” J.
Comp. Chem. 17:520-52 (1996).

14 Halgren, T. A. “Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94.” J. Comp. Chem. 17:553-86
(1996).

15 Halgren, T. A. & Nachbar, R. B. “Merck molecular force field. IV. conformational energies and geometries for MMFF94.” J. Comp. Chem.
17:587-615 (1996).

16 Halgren, T. A. “MMFF VI. MMFF94s option for energy minimization studies.” J. Comp. Chem. 20:720-9 (1999).
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10
>>> for cid in cids:
.. _ = AllChem.MMFFOptimizeMolecule (m2, confId=cid)
>>> rmslist = []
>>> AllChem.AlignMolConformers (m2, RMSlist=rmslist)
>>> print (len(rmslist))

rmslist contains the RMS values between the first conformer and all others. The RMS between two specific conformers
(e.g. 1 and 9) can also be calculated. The flag prealigned lets the user specify if the conformers are already aligned
(by default, the function aligns them).

>>> rms = AllChem.GetConformerRMS (m2, 1, 9, prealigned=True)

More 3D functionality of the RDKit is described in the Cookbook.

Disclaimer/Warning: Conformation generation is a difficult and subtle task. The 2D->3D conversion provided within
the RDKit is not intended to be a replacement for a “real” conformational analysis tool; it merely provides quick 3D
structures for cases when they are required.

3.3.6 Preserving Molecules

Molecules can be converted to and from text using Python’s pickling machinery:

>>> m = Chem.MolFromSmiles ('clccnccl')
>>> import pickle

>>> pkl = pickle.dumps (m)

>>> m2=pickle.loads (pkl)

>>> Chem.MolToSmiles (m2)

'clccnecel!

The RDKit pickle format is fairly compact and it is much, much faster to build a molecule from a pickle than from a
Mol file or SMILES string, so storing molecules you will be working with repeatedly as pickles can be a good idea.

The raw binary data that is encapsulated in a pickle can also be directly obtained from a molecule:

>>> binStr = m.ToBinary ()

This can be used to reconstruct molecules using the Chem.Mol constructor:

>>> m2 = Chem.Mol (binStr)
>>> Chem.MolToSmiles (m2)
'clccnecel!

>>> len (binStr)

123

Note that this is smaller than the pickle:

>>> len(binStr) < len(pkl)
True

The small overhead associated with python’s pickling machinery normally doesn’t end up making much of a difference
for collections of larger molecules (the extra data associated with the pickle is independent of the size of the molecule,
while the binary string increases in length as the molecule gets larger).

Tip: The performance difference associated with storing molecules in a pickled form on disk instead of constantly
reparsing an SD file or SMILES table is difficult to overstate. In a test I just ran on my laptop, loading a set of
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699 drug-like molecules from an SD file took 10.8 seconds; loading the same molecules from a pickle file took 0.7
seconds. The pickle file is also smaller — 1/3 the size of the SD file — but this difference is not always so dramatic (it’s
a particularly fat SD file).

3.3.7 Drawing Molecules

The RDKit has some built-in functionality for creating images from molecules found in the rdkit.Chem.Draw package:

>>> suppl = Chem.SDMolSupplier ('data/cdk2.sdf")
>>> ms = [x for x in suppl if x is not None]

>>> for m in ms: tmp=AllChem.Compute2DCoords (m)
>>> from rdkit.Chem import Draw

>>> Draw.MolToFile(ms[0], 'images/cdk2_moll.o.png')
>>> Draw.MolToFile(ms[1], "images/cdk2_mol2.o0.png')

Producing these images:
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It’s also possible to produce an image grid out of a set of molecules:

>>> img=Draw.MolsToGridImage (ms[:8],molsPerRow=4, subImgSize=(200,200), legends=[x.
—GetProp (" _Name") for x in ms[:8]])

This returns a PIL image, which can then be saved to a file:

>>> img.save ('images/cdk2_molgrid.o.png')

The result looks like this:
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These would of course look better if the common core were aligned. This is easy enough to do:

>>> p = Chem.MolFromSmiles (' [nH]lcnc2cncnc2l'")

>>> subms = [x for x in ms if x.HasSubstructMatch (p)]

>>> len (subms)

14

>>> AllChem.Compute2DCoords (p)
0

>>> for m in subms: AllChem.GenerateDepictionMatching2DStructure (m, p)
>>> img=Draw.MolsToGridImage (subms, molsPerRow=4, subImgSize=(200,200),legends=[x.

—GetProp ("_Name") for x in subms])

>>> img.save ('images/cdk2_molgrid.aligned.o.png')

The result looks like this:
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3.4 Substructure Searching
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Substructure matching can be done using query molecules built from SMARTS:

ZINC0148734!

ZINC0381443°

>>> m =
>>> patt =

Chem.MolFromSmiles ('clccccclO')
Chem.MolFromSmarts ('ccO")

>>> m.HasSubstructMatch (patt)

True

>>> m.GetSubstructMatch (patt)

(0, 5, 6)

Those are the atom indices in m, ordered as patt ‘s atoms. To get all of the matches:

30
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>>> m.GetSubstructMatches (patt)
(0, 5, 6), (4, 5, 6))

This can be used to easily filter lists of molecules:

>>> suppl = Chem.SDMolSupplier ('data/actives_5ht3.sdf")
>>> patt = Chem.MolFromSmarts ('c[NHL1]")
>>> matches = []
>>> for mol in suppl:
if mol.HasSubstructMatch (patt) :
matches.append (mol)

>>> len (matches)
22

We can write the same thing more compactly using Python’s list comprehension syntax:

>>> matches = [x for x in suppl if x.HasSubstructMatch (patt)]
>>> len (matches)
22

Substructure matching can also be done using molecules built from SMILES instead of SMARTS:

>>> m = Chem.MolFromSmiles ('C1l=CC=CC=C10C")

>>> m.HasSubstructMatch (Chem.MolFromSmarts ('CO"))
True

>>> m.HasSubstructMatch (Chem.MolFromSmiles ('CO"))
True

But don’t forget that the semantics of the two languages are not exactly equivalent:

>>> m.HasSubstructMatch (Chem.MolFromSmiles ('COC"))

True

>>> m.HasSubstructMatch (Chem.MolFromSmarts ('COC"))

False

>>> m.HasSubstructMatch (Chem.MolFromSmarts ('COc')) #<—- need an aromatic C
True

3.4.1 Stereochemistry in substructure matches

By default information about stereochemistry is not used in substructure searches:

>>> m = Chem.MolFromSmiles ('CC[CQH] (F)CL")
>>> m.HasSubstructMatch (Chem.MolFromSmiles ('C[C@H] (F)CL1"))

True

>>> m.HasSubstructMatch (Chem.MolFromSmiles ('C[CREH] (F)C1"))
True

>>> m.HasSubstructMatch (Chem.MolFromSmiles ('CC(F)C1"))

True

But this can be changed via the useChirality argument:

>>> m.HasSubstructMatch (Chem.MolFromSmiles ('C[C@H] (F)Cl"),useChirality=True)
True
>>> m.HasSubstructMatch (Chem.MolFromSmiles ('C[CE@EH] (F)C1l"),useChirality=True)
False
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>>> m.HasSubstructMatch (Chem.MolFromSmiles ('CC(F)Cl"'),useChirality=True)
True

Notice that when useChirality is set a non-chiral query does match a chiral molecule. The same is not true for a chiral
query and a non-chiral molecule:

>>> m.HasSubstructMatch (Chem.MolFromSmiles ('CC(F)C1"))

True

>>> m2 = Chem.MolFromSmiles ('CCC(F)C1l")

>>> m2.HasSubstructMatch (Chem.MolFromSmiles ('"C[C@H] (F)C1l"),useChirality=True)
False

3.5 Chemical Transformations

The RDKit contains a number of functions for modifying molecules. Note that these transformation functions are
intended to provide an easy way to make simple modifications to molecules. For more complex transformations, use
the Chemical Reactions functionality.

3.5.1 Substructure-based transformations

There’s a variety of functionality for using the RDKit’s substructure-matching machinery for doing quick molecular
transformations. These transformations include deleting substructures:

>>> m = Chem.MolFromSmiles ('CC (=0)0")

>>> patt = Chem.MolFromSmarts ('C(=0) [OH]")
>>> rm = AllChem.DeleteSubstructs (m,patt)
>>> Chem.MolToSmiles (rm)

ICI

replacing substructures:

>>> repl = Chem.MolFromSmiles ('OC")

>>> patt = Chem.MolFromSmarts ('[$(NC(=0))]")

>>> m = Chem.MolFromSmiles ('CC (=0)N")

>>> rms = AllChem.ReplaceSubstructs (m,patt, repl)
>>> rms

(<rdkit.Chem.rdchem.Mol object at 0x...>,)

>>> Chem.MolToSmiles (rms[0])

'Ccoc (C)=0"

as well as simple SAR-table transformations like removing side chains:

>>> ml = Chem.MolFromSmiles ('BrCCclcncnclC (=0)0")
>>> core = Chem.MolFromSmiles ('clcncncl')

>>> tmp = Chem.ReplaceSidechains (ml, core)

>>> Chem.MolToSmiles (tmp)

'"[#]clcncnecl[*]"

and removing cores:

>>> tmp = Chem.ReplaceCore (ml, core)
>>> Chem.MolToSmiles (tmp)
'[x]C(=0)0.[x]CCBzr'
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To get more detail about the sidechains (e.g. sidechain labels), use isomeric smiles:

>>> Chem.MolToSmiles (tmp, True)
'[1+]CCBr.[2*]C(=0)0"

By default the sidechains are labeled based on the order they are found. They can also be labeled according by the
number of that core-atom theyre attached to:

>>> ml = Chem.MolFromSmiles ('clc (CCO)ncnclC(=0)0")
>>> tmp=Chem.ReplaceCore (ml, core, labelByIndex=True)
>>> Chem.MolToSmiles (tmp, True)

'[1x]CCO.[5%]C(=0)Q"

ReplaceCore returns the sidechains in a single molecule. This can be split into separate molecules using GetMolFrags

>>> rs = Chem.GetMolFrags (tmp, asMols=True)
>>> len(rs)

2

>>> Chem.MolToSmiles (rs[0], True)

'[1x]CCO’'

>>> Chem.MolToSmiles (rs[1], True)
'"[5%]C(=0)0"

3.5.2 Murcko Decomposition

The RDKit provides standard Murcko-type decomposition ” of molecules into scaffolds:

>>> from rdkit.Chem.Scaffolds import MurckoScaffold
>>> cdk2mols = Chem.SDMolSupplier ('data/cdk2.sdf")
>>> ml = cdk2mols[0]

>>> core = MurckoScaffold.GetScaffoldForMol (ml)

>>> Chem.MolToSmiles (core)

'clncc2nc[nH]c2nl'!

or into a generic framework:

>>> fw = MurckoScaffold.MakeScaffoldGeneric (core)
>>> Chem.MolToSmiles (fw)
rclcececaccececezect!

3.6 Maximum Common Substructure

The FindMCS function find a maximum common substructure (MCS) of two or more molecules:

>>> from rdkit.Chem import rdFMCS
>>> moll = Chem.MolFromSmiles ("O=C (NCclcc (OC)c (0O)ccl)CCCcC/Cc=C/C(C)yc™)
>>> mol2 = Chem.MolFromSmiles ("CC (C)CCCCCC (=0)NCCI1=CC (=C(C=Cl)0)oc™)

>>> mol3 = Chem.MolFromSmiles ("cl (C=0)cc (0C)c (0)ccl™)
>>> mols = [moll,mol2,mol3]

>>> res=rdFMCS.FindMCS (mols)

>>> res

7 Bemis, G. W.; Murcko, M. A. “The Properties of Known Drugs. 1. Molecular Frameworks.” J. Med. Chem. 39:2887-93 (1996).
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<rdkit.Chem.rdFMCS.MCSResult object at Ox...>

>>> res.numAtoms

10

>>> res.numBonds

10

>>> res.smartsString

"[#6]1(-[#6]) : [#6]:[#6] (—[#8]-[#6]):[#6] (:[#6]:[#6]:1)-[#8]"
>>> res.canceled

False

It returns an MCSResult instance with information about the number of atoms and bonds in the MCS, the SMARTS
string which matches the identified MCS, and a flag saying if the algorithm timed out. If no MCS is found then the
number of atoms and bonds is set to 0 and the SMARTS to ' '.

By default, two atoms match if they are the same element and two bonds match if they have the same bond type.
Specify at omCompare and bondCompare to use different comparison functions, as in:

>>> mols = (Chem.MolFromSmiles ('NCC'),Chem.MolFromSmiles ('OC=C"))

>>> rdFMCS.FindMCS (mols) .smartsString

T

>>> rdFMCS.FindMCS (mols, atomCompare=rdFMCS.AtomCompare.CompareAny) .smartsString
"[#7,#8]-[#6]"

>>> rdFMCS.FindMCS (mols, bondCompare=rdFMCS.BondCompare.CompareAny) .smartsString
'[#6]1-,=[#6]"

The options for the atomCompare argument are: CompareAny says that any atom matches any other atom, Compa-
reElements compares by element type, and Comparelsotopes matches based on the isotope label. Isotope labels can
be used to implement user-defined atom types. A bondCompare of CompareAny says that any bond matches any other
bond, CompareOrderExact says bonds are equivalent if and only if they have the same bond type, and CompareOrder
allows single and aromatic bonds to match each other, but requires an exact order match otherwise:

>>> mols = (Chem.MolFromSmiles ('clcccccl'),Chem.MolFromSmiles ('CICCCC=C1"))

>>> rdFMCS.FindMCS (mols,bondCompare=rdFMCS.BondCompare.CompareAny) .smartsString
"[#6]1:, —[#6]:, - [#6]:, - [#6]:, - [#6]:,=[#6]:,-1"

>>> rdFMCS.FindMCS (mols,bondCompare=rdFMCS.BondCompare.CompareOrderExact) .smartsString
L

>>> rdFMCS.FindMCS (mols, bondCompare=rdFMCS.BondCompare.CompareOrder) .smartsString
"[#6] (:, - [#6]:,—[#6]:,-[#6]):,-[#6]:,-[#6]"

A substructure has both atoms and bonds. By default, the algorithm attempts to maximize the number of bonds found.
You can change this by setting the maximizeBonds argument to False. Maximizing the number of bonds tends to
maximize the number of rings, although two small rings may have fewer bonds than one large ring.

You might not want a 3-valent nitrogen to match one which is 5-valent. The default mat chvValences value of False
ignores valence information. When True, the atomCompare setting is modified to also require that the two atoms have
the same valency.

>>> mols = (Chem.MolFromSmiles ('NC10C1'"),Chem.MolFromSmiles ('C10OC1 [N+] (=0) [0-1"))
>>> rdFMCS.FindMCS (mols) .numAtoms

4

>>> rdFMCS.FindMCS (mols, matchValences=True) .numBonds

3

It can be strange to see a linear carbon chain match a carbon ring, which is what the ringMatchesRingOnly
default of False does. If you set it to True then ring bonds will only match ring bonds.
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>>> mols = [Chem.MolFromSmiles ("C1CCCICCC"), Chem.MolFromSmiles ("C1CCCCCC1™)]
>>> rdFMCS.FindMCS (mols) .smartsString

"[#6] (- [#6]-[#6])-[#6]-[#6]-[#6]—-[#6]"

>>> rdFMCS.FindMCS (mols, ringMatchesRingOnly=True) .smartsString

"[#6] (- [#6]1-[#6])-[#6]"'

You can further restrict things and require that partial rings (as in this case) are not allowed. That is, if an atom is
part of the MCS and the atom is in a ring of the entire molecule then that atom is also in a ring of the MCS. Set
completeRingsOnly to True to toggle this requirement and also sets ringMatchesRingOnly to True.

>>> mols = [Chem.MolFromSmiles ("CCCI1CC2CICN2"), Chem.MolFromSmiles ("C1CC2C1CC2")]
>>> rdFMCS.FindMCS (mols) .smartsString

"[#6]11-[#6]-[#6] (-[#6]-1-[#6])-[#6]"

>>> rdFMCS.FindMCS (mols, ringMatchesRingOnly=True) .smartsString

"[#6] (- [#6]-[#6]-[#6]1-[#6])-[#6]"

>>> rdFMCS.FindMCS (mols, completeRingsOnly=True) .smartsString
"[#6]1-[#6]-[#6]-[#6]-1"

The MCS algorithm will exhaustively search for a maximum common substructure. Typically this takes a fraction of
a second, but for some comparisons this can take minutes or longer. Use the t imeout parameter to stop the search
after the given number of seconds (wall-clock seconds, not CPU seconds) and return the best match found in that time.
If timeout is reached then the canceled property of the MCSResult will be True instead of False.

>>> mols = [Chem.MolFromSmiles ("Nclcccccl"+10), Chem.MolFromSmiles ("Nclcccccecccccel
—"%x10) ]

>>> rdFMCS.FindMCS (mols, timeout=1) .canceled

True

(The MCS after 50 seconds contained 511 atoms.)

3.7 Fingerprinting and Molecular Similarity

The RDK:it has a variety of built-in functionality for generating molecular fingerprints and using them to calculate
molecular similarity.

3.7.1 Topological Fingerprints

>>> from rdkit import DataStructs

>>> from rdkit.Chem.Fingerprints import FingerprintMols

>>> ms = [Chem.MolFromSmiles ('CCOC'"'), Chem.MolFromSmiles ('CCO"),
.. Chem.MolFromSmiles ('COC")]

>>> fps = [FingerprintMols.FingerprintMol (x) for x in ms]

>>> DataStructs.FingerprintSimilarity (fps[0], fps[1])

0.6...

>>> DataStructs.FingerprintSimilarity (fps[0], fps[2])

0.4...

>>> DataStructs.FingerprintSimilarity (fps[1], fps(2])

0.25

The fingerprinting algorithm used is similar to that used in the Daylight fingerprinter: it identifies and hashes topolog-
ical paths (e.g. along bonds) in the molecule and then uses them to set bits in a fingerprint of user-specified lengths.
After all paths have been identified, the fingerprint is typically folded down until a particular density of set bits is
obtained.
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The default set of parameters used by the fingerprinter is: - minimum path size: 1 bond - maximum path size: 7 bonds
- fingerprint size: 2048 bits - number of bits set per hash: 2 - minimum fingerprint size: 64 bits - target on-bit density
0.3

You can control these by calling RDKFingerprint directly; this will return an unfolded fingerprint that you can then
fold to the desired density. The function FingerprintMol (written in python) shows how this is done.

The default similarity metric used by FingerprintSimilarity is the Tanimoto similarity. One can use different similarity
metrics:

>>> DataStructs.FingerprintSimilarity (fps[0], fps[1l], metric=DataStructs.
—DiceSimilarity)
0.75

Auvailable similarity metrics include Tanimoto, Dice, Cosine, Sokal, Russel, Kulczynski, McConnaughey, and Tversky.

3.7.2 MACCS Keys

There is a SMARTS-based implementation of the 166 public MACCS keys.

>>> from rdkit.Chem import MACCSkeys

>>> fps = [MACCSkeys.GenMACCSKeys (x) for x in ms]
>>> DataStructs.FingerprintSimilarity (fps[0], fps([1])
0.5

>>> DataStructs.FingerprintSimilarity (fps[0], fps[2])
0.538...

>>> DataStructs.FingerprintSimilarity (fps[1l], fps(2])
0.214...

The MACCS keys were critically evaluated and compared to other MACCS implementations in Q3 2008. In cases
where the public keys are fully defined, things looked pretty good.

3.7.3 Atom Pairs and Topological Torsions

Atom-pair descriptors * are available in several different forms. The standard form is as fingerprint including counts
for each bit instead of just zeros and ones:

>>> from rdkit.Chem.AtomPairs import Pairs

>>> ms = [Chem.MolFromSmiles ('CI1CCC10OCC"),Chem.MolFromSmiles ('CC(C)OCC"),Chem.
—MolFromSmiles ('CCOCC") ]
>>> pairFps = [Pairs.GetAtomPairFingerprint (x) for x in ms]

Because the space of bits that can be included in atom-pair fingerprints is huge, they are stored in a sparse manner. We
can get the list of bits and their counts for each fingerprint as a dictionary:

>>> d = pairFps[-1].GetNonzeroElements ()
>>> d[541732]

1

>>> d[1606690]

2

Descriptions of the bits are also available:

3 Carhart, R.E.; Smith, D.H.; Venkataraghavan R. “Atom Pairs as Molecular Features in Structure-Activity Studies: Definition and Applications”
J. Chem. Inf. Comp. Sci. 25:64-73 (1985).
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>>> Pairs.ExplainPairScore (558115)
(¢'c', 1, 0), 3, ('c', 2, 0))

The above means: C with 1 neighbor and O pi electrons which is 3 bonds from a C with 2 neighbors and 0 pi electrons

The usual metric for similarity between atom-pair fingerprints is Dice similarity:

>>> from rdkit import DataStructs

>>> DataStructs.DiceSimilarity (pairFps([0],pairFps[1l])
0.333...

>>> DataStructs.DiceSimilarity(pairFps([0],pairFps([2])
0.258...

>>> DataStructs.DiceSimilarity(pairFps|[l],pairFps([2])
0.56

It’s also possible to get atom-pair descriptors encoded as a standard bit vector fingerprint (ignoring the count informa-
tion):

>>> pairFps = [Pairs.GetAtomPairFingerprintAsBitVect (x) for x in ms]

Since these are standard bit vectors, the rdkit.DataStructs module can be used for similarity:

>>> from rdkit import DataStructs

>>> DataStructs.DiceSimilarity (pairFps([0],pairFps([1])
0.48

>>> DataStructs.DiceSimilarity (pairFps([0],pairFps([2])
0.380...

>>> DataStructs.DiceSimilarity(pairFps([l],pairFps([2])
0.625

Topological torsion descriptors * are calculated in essentially the same way:

>>> from rdkit.Chem.AtomPairs import Torsions

>>> tts = [Torsions.GetTopologicalTorsionFingerprintAsIntVect (x) for x in ms]
>>> DataStructs.DiceSimilarity (tts[0],tts([1])
0.166...

At the time of this writing, topological torsion fingerprints have too many bits to be encodeable using the BitVector
machinery, so there is no GetTopologicalTorsionFingerprintAsBitVect function.

3.7.4 Morgan Fingerprints (Circular Fingerprints)

This family of fingerprints, better known as circular fingerprints >, is built by applying the Morgan algorithm to a
set of user-supplied atom invariants. When generating Morgan fingerprints, the radius of the fingerprint must also be
provided :

>>> from rdkit.Chem import AllChem

>>> ml = Chem.MolFromSmiles ('Cclcccccl')

>>> fpl = AllChem.GetMorganFingerprint (ml, 2)

>>> fpl

<rdkit.DataStructs.cDataStructs.UIntSparselIntVect object at Ox...>
>>> m2 = Chem.MolFromSmiles ('Cclnccccl')

>>> fp2 = AllChem.GetMorganFingerprint (m2,2)

4 Nilakantan, R.; Bauman N.; Dixon J.S.; Venkataraghavan R. “Topological Torsion: A New Molecular Descriptor for SAR Applications.
Comparison with Other Desciptors.” J. Chem.Inf. Comp. Sci. 27:82-5 (1987).
5 Rogers, D.; Hahn, M. “Extended-Connectivity Fingerprints.” J. Chem. Inf. and Model. 50:742-54 (2010).

3.7. Fingerprinting and Molecular Similarity 37




RDKit Documentation, Release 2016.03.1

>>> DataStructs.DiceSimilarity (fpl, fp2)
0.55...

Morgan fingerprints, like atom pairs and topological torsions, use counts by default, but it’s also possible to calculate
them as bit vectors:

>>> fpl = AllChem.GetMorganFingerprintAsBitVect (ml,2,nBits=1024)
>>> fpl

<rdkit.DataStructs.cDataStructs.ExplicitBitVect object at 0x...>
>>> fp2 = AllChem.GetMorganFingerprintAsBitVect (m2,2,nBits=1024)
>>> DataStructs.DiceSimilarity (fpl, fp2)

0.51...

The default atom invariants use connectivity information similar to those used for the well known ECFP family of
fingerprints. Feature-based invariants, similar to those used for the FCFP fingerprints, can also be used. The feature
definitions used are defined in the section Feature Definitions Used in the Morgan Fingerprints. At times this can lead
to quite different similarity scores:

>>> ml = Chem.MolFromSmiles ('clccccnl')

>>> m2 = Chem.MolFromSmiles ('clcccol')

>>> fpl = AllChem.GetMorganFingerprint (ml, 2)

>>> fp2 = AllChem.GetMorganFingerprint (m2,2)

>>> ffpl = AllChem.GetMorganFingerprint (ml, 2, useFeatures=True)
>>> ffp2 = AllChem.GetMorganFingerprint (m2, 2, useFeatures=True)
>>> DataStructs.DiceSimilarity (fpl, fp2)

0.36...

>>> DataStructs.DiceSimilarity (ffpl, ffp2)

0.90...

When comparing the ECFP/FCFP fingerprints and the Morgan fingerprints generated by the RDKit, remember that
the 4 in ECFP4 corresponds to the diameter of the atom environments considered, while the Morgan fingerprints take
a radius parameter. So the examples above, with radius=2, are roughly equivalent to ECFP4 and FCFP4.

The user can also provide their own atom invariants using the optional invariants argument to GetMorganFingerprint.
Here’s a simple example that uses a constant for the invariant; the resulting fingerprints compare the topology of
molecules:

>>> ml = Chem.MolFromSmiles ('Cclcccccl'")

>>> m2 = Chem.MolFromSmiles ('Cclncncnl')

>>> fpl = AllChem.GetMorganFingerprint (ml, 2, invariants=[1]*ml.GetNumAtoms ())
>>> fp2 = AllChem.GetMorganFingerprint (m2, 2, invariants=[1]+m2.GetNumAtoms ())
>>> fpl==fp2

True

Note that bond order is by default still considered:

>>> m3 = Chem.MolFromSmiles ('CCI1CCCCCL1")

>>> fp3 = AllChem.GetMorganFingerprint (m3, 2, invariants=[1]+m3.GetNumAtoms ())
>>> fpl==fp3

False

But this can also be turned off:

>>> fpl = AllChem.GetMorganFingerprint (ml, 2, invariants=[1]*ml.GetNumAtoms (),

... useBondTypes=False)

>>> fp3 = AllChem.GetMorganFingerprint (m3, 2, invariants=[1]*m3.GetNumAtoms (),
useBondTypes=False)
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>>> fpl==fp3
True

Explaining bits from Morgan Fingerprints

Information is available about the atoms that contribute to particular bits in the Morgan fingerprint via the bitInfo
argument. The dictionary provided is populated with one entry per bit set in the fingerprint, the keys are the bit ids,
the values are lists of (atom index, radius) tuples.

>>> m = Chem.MolFromSmiles ('clcccnclC')
>>> info={}

>>> fp = AllChem.GetMorganFingerprint (m,2,bitInfo=info)
>>> len (fp.GetNonzeroElements())

16

>>> len (info)

16

>>> info[98513984]

(1, )y, (2, 1))

>>> info[4048591891]

((5, 2),)

Interpreting the above: bit 98513984 is set twice: once by atom 1 and once by atom 2, each at radius 1. Bit 4048591891
is set once by atom 5 at radius 2.

Focusing on bit 4048591891, we can extract the submolecule consisting of all atoms within a radius of 2 of atom 5:

>>> env = Chem.FindAtomEnvironmentOfRadiusN (m,2,5)
>>> amap={}

>>> submol=Chem.PathToSubmol (m, env, atomMap=amap)
>>> submol.GetNumAtoms ()

6

>>> amap

{0: 3, 1: 5, 3: 4, 4: 0, 5: 1, 6: 2}

And then “explain” the bit by generating SMILES for that submolecule:

>>> Chem.MolToSmiles (submol)
'ccc (C)nc'!

This is more useful when the SMILES is rooted at the central atom:

>>> Chem.MolToSmiles (submol, rootedAtAtom=amap[5],canonical=False)
'c(nc) (C)cc'!

An alternate (and faster, particularly for large numbers of molecules) approach to do the same thing, using the function
MolFragmentToSmiles :

>>> atoms=set ()

>>> for bidx in env:
atoms.add (m.GetBondWithIdx (bidx) .GetBeginAtomIdx () )
atoms.add (m.GetBondWithIdx (bidx) .GetEndAtomIdx ())

>>> Chem.MolFragmentToSmiles (m, atomsToUse=1ist (atoms),bondsToUse=env, rootedAtAtom=5)
'c(C) (cc)nc'!
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3.7.5 Picking Diverse Molecules Using Fingerprints

A common task is to pick a small subset of diverse molecules from a larger set. The RDKit provides a number of
approaches for doing this in the rdkit.SimDivFilters module. The most efficient of these uses the MaxMin algorithm.
® Here’s an example:

Start by reading in a set of molecules and generating Morgan fingerprints:

>>> from rdkit import Chem

>>> from rdkit.Chem.rdMolDescriptors import GetMorganFingerprint
>>> from rdkit import DataStructs

>>> from rdkit.SimDivFilters.rdSimDivPickers import MaxMinPicker

>>> ms = [x for x in Chem.SDMolSupplier ('data/actives_5ht3.sdf'")]
>>> while ms.count (None) : ms.remove (None)

>>> fps = [GetMorganFingerprint (x,3) for x in ms]

>>> nfps = len(fps)

The algorithm requires a function to calculate distances between objects, we’ll do that using DiceSimilarity:

>>> def distij (i, j, fps=fps):
return 1-DataStructs.DiceSimilarity (fps[i], fpslj])

Now create a picker and grab a set of 10 diverse molecules:

>>> picker = MaxMinPicker ()

>>> pickIndices = picker.LazyPick(distij,nfps,10,seed=23)
>>> list (pickIndices)

[93, 109, 154, 6, 95, 135, 151, 61, 137, 139]

Note that the picker just returns indices of the fingerprints; we can get the molecules themselves as follows:

>>> picks = [ms([x] for x in pickIndices]

3.7.6 Generating Similarity Maps Using Fingerprints

Similarity maps are a way to visualize the atomic contributions to the similarity between a molecule and a reference
molecule. The methodology is described in Ref. !” . They are in the rdkit.Chem.Draw.SimilarityMaps module :

Start by creating two molecules:

>>> from rdkit import Chem
>>> mol = Chem.MolFromSmiles ('COclcccc2cc (C(=0)NCCCCN3CCN (cdccececbneecne54)CC3)oc21")
>>> refmol = Chem.MolFromSmiles ('CCCN (CCCCNICCN (c2ccccc20C)CCl)Ceclcecc2cececcc2el ")

The SimilarityMaps module supports three kind of fingerprints: atom pairs, topological torsions and Morgan finger-
prints.

>>> from rdkit.Chem import Draw

>>> from rdkit.Chem.Draw import SimilarityMaps

>>> fp = SimilarityMaps.GetAPFingerprint (mol, fpType='normal')
>>> fp = SimilarityMaps.GetTTFingerprint (mol, fpType='normal')
>>> fp = SimilarityMaps.GetMorganFingerprint (mol, fpType='bv')

6 Ashton, M. et al. “Identification of Diverse Database Subsets using Property-Based and Fragment-Based Molecular Descriptions.” Quantitative
Structure-Activity Relationships 21:598-604 (2002).

17 Riniker, S.; Landrum, G. A. “Similarity Maps - A Visualization Strategy for Molecular Fingerprints and Machine-Learning Methods” J.
Cheminf. 5:43 (2013).
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The types of atom pairs and torsions are normal (default), hashed and bit vector (bv). The types of the Morgan
fingerprint are bit vector (bv, default) and count vector (count).

The function generating a similarity map for two fingerprints requires the specification of the fingerprint function and
optionally the similarity metric. The default for the latter is the Dice similarity. Using all the default arguments of the
Morgan fingerprint function, the similarity map can be generated like this:

>>> fig, maxweight = SimilarityMaps.GetSimilarityMapForFingerprint (refmol, mol,
—SimilarityMaps.GetMorganFingerprint)

Producing this image:

For a different type of Morgan (e.g. count) and radius = 1 instead of 2, as well as a different similarity metric (e.g.
Tanimoto), the call becomes:
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>>> from rdkit import DataStructs

>>> fig, maxweight = SimilarityMaps.GetSimilarityMapForFingerprint (refmol, mol,
—lambda m,idx: SimilarityMaps.GetMorganFingerprint (m, atomId=idx, radius=1l, fpType=
—'count '), metric=DataStructs.TanimotoSimilarity)

Producing this image:

The convenience function GetSimilarityMapForFingerprint involves the normalisation of the atomic weights such that
the maximum absolute weight is 1. Therefore, the function outputs the maximum weight that was found when creating
the map.

>>> print (maxweight)
0.05747...

If one does not want the normalisation step, the map can be created like:
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>>> weights = SimilarityMaps.GetAtomicWeightsForFingerprint (refmol, mol,
—SimilarityMaps.GetMorganFingerprint)

>>> print (["2.2f " % w for w in weights])

['0.05 ',

>>> fig = SimilarityMaps.GetSimilarityMapFromWeights (mol, weights)

Producing this image:

3.8 Descriptor Calculation

A variety of descriptors are available within the RDKit. The complete list is provided in List of Available Descriptors.

Most of the descriptors are straightforward to use from Python via the centralized rdkit.Chem.Descriptors module :

3.8. Descriptor Calculation
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>>> from rdkit.Chem import Descriptors

>>> m = Chem.MolFromSmiles ('clccccclC(=0)0")
>>> Descriptors.TPSA (m)

37.3

>>> Descriptors.MolLogP (m)

1.3848

Partial charges are handled a bit differently:

>>> m = Chem.MolFromSmiles ('clccccclC(=0)0")

>>> AllChem.ComputeGasteigerCharges (m)

>>> float (m.GetAtomWithIdx (0) .GetProp (' _GasteigerCharge'))
-0.047...

3.8.1 Visualization of Descriptors

Similarity maps can be used to visualize descriptors that can be divided into atomic contributions.

The Gasteiger partial charges can be visualized as (using a different color scheme):

>>> from rdkit.Chem.Draw import SimilarityMaps
>>> mol = Chem.MolFromSmiles ('COclcccc2cc (C(=0)NCCCCN3CCN (cdccececbneecneb54)CC3)oc21")
>>> AllChem.ComputeGasteigerCharges (mol)

>>> contribs = [float (mol.GetAtomWithIdx (i) .GetProp (' _GasteigerCharge')) for i in
—range (mol.GetNumAtoms () ) ]
>>> fig = SimilarityMaps.GetSimilarityMapFromWeights (mol, contribs, colorMap='jet', |,

—~contourLines=10)

Producing this image:
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Or for the Crippen contributions to logP:

>>> from rdkit.Chem import rdMolDescriptors

>>> contribs = rdMolDescriptors._CalcCrippenContribs (mol)

>>> fig = SimilarityMaps.GetSimilarityMapFromWeights (mol, [x for x,y in contribs],
—~colorMap="7jet', contourLines=10)

Producing this image:
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3.9 Chemical Reactions

The RDK:it also supports applying chemical reactions to sets of molecules. One way of constructing chemical reactions
is to use a SMARTS-based language similar to Daylight’s Reaction SMILES '':

>>> rxn = AllChem.ReactionFromSmarts (' [C:1](=[0:2])—-[0OD1].[N!HO:3]1>>[C:1](=[0:2]) [N:3]
")

>>> rxn

<rdkit.Chem.rdChemReactions.ChemicalReaction object at 0x...>

>>> rxn.GetNumProductTemplates ()

1

1 A more detailed description of reaction smarts, as defined by the rdkit, is in the The RDKit Book.
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>>> ps = rxn.RunReactants ((Chem.MolFromSmiles ('CC(=0)0"),Chem.MolFromSmiles ('NC"')))
>>> len(ps) # one entry for each possible set of products

1

>>> len(ps[0]) # each entry contains one molecule for each product
1

>>> Chem.MolToSmiles (ps[0][0])

'CNC (C)=0"

>>> ps = rxn.RunReactants ((Chem.MolFromSmiles ('C (COC (=0)0)C(=0)0"),Chem.MolFromSmiles (
—'NC")))
>>> len (ps)
2

>>> Chem.MolToSmiles (ps[0][0])
'CNC (=0) OCCC (=0)0"

>>> Chem.MolToSmiles (ps[1]1[0])
'CNC (=0) CCOC (=0)0"

Reactions can also be built from MDL rxn files:

>>> rxn = AllChem.ReactionFromRxnFile ('data/AmideBond.rxn')
>>> rxn.GetNumReactantTemplates ()

>>> rxn.GetNumProductTemplates ()

>>> ps = rxn.RunReactants ((Chem.MolFromSmiles ('CC(=0)0"), Chem.MolFromSmiles ('NC")))
>>> len (ps)

1

>>> Chem.MolToSmiles (ps[0][0])

'CNC (C)=0"

It is, of course, possible to do reactions more complex than amide bond formation:

>>> rxn = AllChem.ReactionFromSmarts (' [C:1]=[C:2].[C:3]=[*:4][*:5]=[C:6]>>[C:1]1][C:
2] [C:3][*:4]1=[%:5][C:6]1")

>>> ps = rxn.RunReactants ((Chem.MolFromSmiles ('OC=C"), Chem.MolFromSmiles ('C=CC (N)=C
<))

>>> Chem.MolToSmiles (ps[0][0])

'NCl=CCcCc(0)C1"

Note in this case that there are multiple mappings of the reactants onto the templates, so we have multiple product
sets:

>>> len (ps)
4

You can use canonical smiles and a python dictionary to get the unique products:

>>> unigps = {}

>>> for p in ps:
smi = Chem.MolToSmiles (p[0])
unigps[smi] = pl[0]

>>> sorted(unigps.keys())
['NC1l=CCC(O)CCl', 'NCl=CCCC(O)C1l'"]

Note that the molecules that are produced by the chemical reaction processing code are not sanitized, as this artificial
reaction demonstrates:
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>>> rxn = AllChem.ReactionFromSmarts (' [C:1]=[C:2][C:3]=[C:4].[C:5]=[C:6]>>[C:1]1=][C:
—2][C:3]=[C:4][C:5]=[C:6]1")

>>> ps = rxn.RunReactants ((Chem.MolFromSmiles ('C=CC=C"), Chem.MolFromSmiles('C=C")))
>>> Chem.MolToSmiles (ps[0][0])

'Cl=CC=CccCc=C1"

>>> p0 = ps[0][0]

>>> Chem.SanitizeMol (p0)

rdkit.Chem.rdmolops.SanitizeFlags.SANITIZE_NONE

>>> Chem.MolToSmiles (p0)

'clccccecel!

3.9.1 Advanced Reaction Functionality

Protecting Atoms

Sometimes, particularly when working with rxn files, it is difficult to express a reaction exactly enough to not end up
with extraneous products. The RDKit provides a method of “protecting” atoms to disallow them from taking part in
reactions.

This can be demonstrated re-using the amide-bond formation reaction used above. The query for amines isn’t specific
enough, so it matches any nitrogen that has at least one H attached. So if we apply the reaction to a molecule that
already has an amide bond, the amide N is also treated as a reaction site:

>>> rxn = AllChem.ReactionFromRxnFile ('data/AmideBond.rxn')
>>> acid = Chem.MolFromSmiles ('CC (=0)0")
>>> base = Chem.MolFromSmiles ('CC (=0)NCCN")

>>> ps = rxn.RunReactants((acid,base))
>>> len (ps)
2

>>> Chem.MolToSmiles (ps[0][0])
'CC(=0)N(CCN)C(C)=0"

>>> Chem.MolToSmiles (ps[1][0])
'CC (=0) NCCNC (C)=0"

The first product corresponds to the reaction at the amide N.

We can prevent this from happening by protecting all amide Ns. Here we do it with a substructure query that matches
amides and thioamides and then set the “_protected” property on matching atoms:

>>> amidep = Chem.MolFromSmarts (' [N;$(NC=[0,S]1)]")
>>> for match in base.GetSubstructMatches (amidep) :
base.GetAtomWithIdx (match[0]) .SetProp('_protected','1l")

Now the reaction only generates a single product:

>>> ps = rxn.RunReactants ((acid, base))
>>> len (ps)
1

>>> Chem.MolToSmiles (ps[0][0])
'CC (=0)NCCNC (C)=0"
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3.9.2 Recap Implementation

Associated with the chemical reaction functionality is an implementation of the Recap algorithm. ® Recap uses a set
of chemical transformations mimicking common reactions carried out in the lab in order to decompose a molecule
into a series of reasonable fragments.

The RDK:it rdkit.Chem.Recap implementation keeps track of the hierarchy of transformations that were applied:

>>> from rdkit import Chem

>>> from rdkit.Chem import Recap

>>> m = Chem.MolFromSmiles ('clccccclOCCOC (=0)CC")
>>> hierarch = Recap.RecapDecompose (m)

>>> type (hierarch)

<class 'rdkit.Chem.Recap.RecapHierarchyNode'>

The hierarchy is rooted at the original molecule:

>>> hierarch.smiles
'CCC (=0)0CCOclcccecel!

and each node tracks its children using a dictionary keyed by SMILES:

>>> ks=hierarch.children.keys()
>>> sorted(ks)
["[+x]C(=0)CC', '"[*x]CCOC(=0)CC', '"[*x]CCOclcccccl', '"[%]OCCOclccccecl', '"[+x]clccceccel']

The nodes at the bottom of the hierarchy (the leaf nodes) are easily accessible, also as a dictionary keyed by SMILES:

>>> ks=hierarch.GetLeaves () .keys ()

>>> ks=sorted(ks)

>>> ks

["[*x]C(=0)CC"', '"[x]CCO[*]", '"[x]CCOclcccccl', '[*]clcccececl']

Notice that dummy atoms are used to mark points where the molecule was fragmented.

The nodes themselves have associated molecules:

>>> leaf = hierarch.GetLeaves () [ks[0]]
>>> Chem.MolToSmiles (leaf.mol)
"[%]C(=0)CC"

3.9.3 BRICS Implementation

The RDKit also provides an implementation of the BRICS algorithm. ° BRICS provides another method for frag-
menting molecules along synthetically accessible bonds:

>>> from rdkit.Chem import BRICS

>>> cdk2mols = Chem.SDMolSupplier ('data/cdk2.sdf")

>>> ml = cdk2mols[0]

>>> sorted(BRICS.BRICSDecompose (ml))

['"[14x]clnc (N)nc2[nH]lcncl2', '"[3%x]O[3%]', '[4x]CC(=0)C(C)C"]
>>> m2 = cdk2mols[20]

8 Lewell, X.Q.; Judd, D.B.; Watson, S.P.; Hann, M.M. “RECAP-Retrosynthetic Combinatorial Analysis Procedure: A Powerful New Technique
for Identifying Privileged Molecular Fragments with Useful Applications in Combinatorial Chemistry” J. Chem. Inf. Comp. Sci. 38:511-22 (1998).

9 Degen, J.; Wegscheid-Gerlach, C.; Zaliani, A; Rarey, M. “On the Art of Compiling and Using ‘Drug-Like’ Chemical Fragment Spaces.”
ChemMedChem 3:1503-7 (2008).
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>>> sorted(BRICS.BRICSDecompose (m2))
['"[1x]C(=O)NN(C)C', '"[1l4x]cl[nH]lnc2clC(=0)clc([1l6*x])ccccl-2", '[l6*]clccc([1l6%*])ccl",
—'[3x]0OC", '"[S*x]IN[5x]"']

Notice that RDKit BRICS implementation returns the unique fragments generated from a molecule and that the dummy
atoms are tagged to indicate which type of reaction applies.

It’s quite easy to generate the list of all fragments for a group of molecules:

>>> allfrags=set ()
>>> for m in cdk2mols:
pieces = BRICS.BRICSDecompose (m)
allfrags.update (pieces)
>>> len(allfrags)
90
>>> sorted(allfrags) [:5]
["NS (=0) (=0) clccc (N/N=C2\\C (=0)Nc3ccc (Br)cc32)ccl', '"[1x]C(=0)C(C)C', '"[1l*x]C(=0O)NN(C)C
—', '"[1x]C(=0O)NNICC[NH+] (C)CC1l', '[1%]C(C)=0"]

The BRICS module also provides an option to apply the BRICS rules to a set of fragments to create new molecules:

>>> import random

>>> random.seed (127)

>>> fragms = [Chem.MolFromSmiles (x) for x in sorted(allfrags)]
>>> ms = BRICS.BRICSBuild (fragms)

The result is a generator object:

>>> ms
<generator object BRICSBuild at 0x...>

That returns molecules on request:

>>> prods = [next (ms) for x in range(10)]
>>> prods[0]
<rdkit.Chem.rdchem.Mol object at 0x...>

The molecules have not been sanitized, so it’s a good idea to at least update the valences before continuing:

>>> for prod in prods:
prod.UpdatePropertyCache (strict=False)

>>> Chem.MolToSmiles (prods[0], True)
'Cocco!

>>> Chem.MolToSmiles (prods[1l], True)
'0=C1Nc2ccc3ncsc3c2/C1l=C/NCCO"

>>> Chem.MolToSmiles (prods[2], True)
'0=C1Nc2ccceec2/Cl=C/NCCO’'

3.9.4 Other fragmentation approaches
In addition to the methods described above, the RDKit provide a very flexible generic function for fragmenting
molecules along user-specified bonds.

Here’s a quick demonstration of using that to break all bonds between atoms in rings and atoms not in rings. We start
by finding all the atom pairs:
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>>> m = Chem.MolFromSmiles ('CCICC (O)ClCcCcCIcCl")

>>> bis = m.GetSubstructMatches (Chem.MolFromSmarts ('[!/R][R] "))
>>> bis

(0, 1), (4, 3), (6, 5), (7, 8))

then we get the corresponding bond indices:

>>> bs = [m.GetBondBetweenAtoms (x,y) .GetIdx () for x,y in bis]
>>> bs
[0, 3, 5, 7]

then we use those bond indices as input to the fragmentation function:

>>> nm = Chem.FragmentOnBonds (m,bs)

the output is a molecule that has dummy atoms marking the places where bonds were broken:

>>> Chem.MolToSmiles (nm, True)
'"[*]CLCC([4*])Cl[6*%].[1x]C.[3x]0O.[5%]CC[8x].[7*]ClCC1"

By default the attachment points are labelled (using isotopes) with the index of the atom that was removed. We can
also provide our own set of atom labels in the form of pairs of unsigned integers. The first value in each pair is used
as the label for the dummy that replaces the bond’s begin atom, the second value in each pair is for the dummy that
replaces the bond’s end atom. Here’s an example, repeating the analysis above and marking the positions where the
non-ring atoms were with the label 10 and marking the positions where the ring atoms were with label 1:

>>> bis = m.GetSubstructMatches (Chem.MolFromSmarts ('[!/R][R] "))
>>> bs = []
>>> labels=[]
>>> for bi in bis:
b = m.GetBondBetweenAtoms (bi[0],bi[1])
if b.GetBeginAtomIdx ()==bi[0]:
labels.append((10,1))
else:
labels.append((1,10))
. bs.append(b.GetIdx())
>>> nm = Chem.FragmentOnBonds (m, bs, dummyLabels=labels)
>>> Chem.MolToSmiles (nm, True)
"[1%]C.[1%x]CC[1x].[1%]0.[10x]JCICC([10%])C1[10x].[10x]C1ICC1"

3.10 Chemical Features and Pharmacophores

3.10.1 Chemical Features

Chemical features in the RDKit are defined using a SMARTS-based feature definition language (described in detail in
the RDKit book). To identify chemical features in molecules, you first must build a feature factory:

>>> from rdkit import Chem

>>> from rdkit.Chem import ChemicalFeatures

>>> from rdkit import RDConfig

>>> import os

>>> fdefName = os.path.join (RDConfig.RDDataDir, 'BaseFeatures.fdef')
>>> factory = ChemicalFeatures.BuildFeatureFactory (fdefName)
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and then use the factory to search for features:

>>> m = Chem.MolFromSmiles ('OCclccccclCN'")

>>> feats = factory.GetFeaturesForMol (m)
>>> len (feats)
8

The individual features carry information about their family (e.g. donor, acceptor, etc.), type (a more detailed descrip-
tion), and the atom(s) that is/are associated with the feature:

>>> feats[0].GetFamily ()
'Donor'

>>> feats[0].GetType ()
'SingleAtomDonor'

>>> feats[0].GetAtomIds ()
(0,)

>>> feats[4].GetFamily ()
'Aromatic’

>>> feats[4].GetAtomIds ()
(2, 3, 4, 5, 6, 1)

If the molecule has coordinates, then the features will also have reasonable locations:

>>> from rdkit.Chem import AllChem

>>> AllChem.Compute2DCoords (m)

0

>>> feats[0].GetPos ()
<rdkit.Geometry.rdGeometry.Point3D object at 0x...>
>>> list (feats[0].GetPos())

[2.07..., -2.335..., 0.0]

3.10.2 2D Pharmacophore Fingerprints

Combining a set of chemical features with the 2D (topological) distances between them gives a 2D pharmacophore.
When the distances are binned, unique integer ids can be assigned to each of these pharmacophores and they can be
stored in a fingerprint. Details of the encoding are in the The RDKit Book.

Generating pharmacophore fingerprints requires chemical features generated via the usual RDKit feature-typing mech-
anism:

>>> from rdkit import Chem

>>> from rdkit.Chem import ChemicalFeatures

>>> fdefName = 'data/MinimalFeatures.fdef’

>>> featFactory = ChemicalFeatures.BuildFeatureFactory (fdefName)

The fingerprints themselves are calculated using a signature (fingerprint) factory, which keeps track of all the parame-
ters required to generate the pharmacophore:

>>> from rdkit.Chem.Pharm2D.SigFactory import SigFactory

>>> sigFactory = SigFactory (featFactory,minPointCount=2,maxPointCount=3)
>>> sigFactory.SetBins ([ (0,2), (2,5), (5,8)1])

>>> sigFactory.Init ()

>>> sigFactory.GetSigSize ()

885

The signature factory is now ready to be used to generate fingerprints, a task which is done using the rd-
kit.Chem.Pharm2D.Generate module:
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>>> from rdkit.Chem.Pharm2D import Generate

>>> mol = Chem.MolFromSmiles ('OCC (=0)CCCN")

>>> fp = Generate.Gen2DFingerprint (mol,sigFactory)

>>> fp

<rdkit.DataStructs.cDataStructs.SparseBitVect object at O0x...>
>>> len (fp)

885

>>> fp.GetNumOnBits ()

57

Details about the bits themselves, including the features that are involved and the binned distance matrix between the
features, can be obtained from the signature factory:

>>> list (fp.GetOnBits()) [:5]

[1, 2, 6, 7, 8]

>>> sigFactory.GetBitDescription (1)

'Acceptor Acceptor |0 1|1 Of"

>>> sigFactory.GetBitDescription (2)

'Acceptor Acceptor |0 2]2 0"

>>> sigFactory.GetBitDescription (8)

'Acceptor Donor [0 212 0"

>>> list (fp.GetOnBits()) [-5:]

[704, 706, 707, 708, 714]

>>> sigFactory.GetBitDescription(707)

'Donor Donor PosIonizable |0 1 2|1 0 112 1 0]"
>>> sigFactory.GetBitDescription(714)

'Donor Donor PosIonizable |0 2 2|2 0 0|2 0 0]

For the sake of convenience (to save you from having to edit the fdef file every time) it is possible to disable particular
feature types within the SigFactory:

>>> sigFactory.skipFeats=['PosIonizable']
>>> sigFactory.Init ()
>>> sigFactory.GetSigSize ()

510

>>> fp2 = Generate.Gen2DFingerprint (mol,sigFactory)
>>> fp2.GetNumOnBits ()

36

Another possible set of feature definitions for 2D pharmacophore fingerprints in the RDKit are those published by
Gobbi and Poppinger. '’ The module rdkit.Chem.Pharm2D.Gobbi_Pharm2D has a pre-configured signature factory
for these fingerprint types. Here’s an example of using it:

>>> from rdkit import Chem

>>> from rdkit.Chem.Pharm2D import Gobbi_Pharm2D,Generate
>>> m = Chem.MolFromSmiles ('OCC=CC (=0)0")

>>> fp = Generate.Gen2DFingerprint (m, Gobbi_Pharm2D.factory)
>>> fp

<rdkit.DataStructs.cDataStructs.SparseBitVect object at Ox...>
>>> fp.GetNumOnBits ()

8

>>> list (fp.GetOnBits())

[23, 30, 150, 154, 157, 185, 28878, 30184]

>>> Gobbi_Pharm2D.factory.GetBitDescription (157)

'"HA HD |0 3[3 0"

10 Gobbi, A. & Poppinger, D. “Genetic optimization of combinatorial libraries.” Biotechnology and Bioengineering 61:47-54 (1998).
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>>> Gobbi_Pharm2D.factory.GetBitDescription (30184)
'HA HD HD |0 3 0|3 0 3]0 3 0"

3.11 Molecular Fragments

The RDK:it contains a collection of tools for fragmenting molecules and working with those fragments. Fragments are
defined to be made up of a set of connected atoms that may have associated functional groups. This is more easily
demonstrated than explained:

>>> fName=os.path.join (RDConfig.RDDataDir, 'FunctionalGroups.txt")
>>> from rdkit.Chem import FragmentCatalog

>>> fparams = FragmentCatalog.FragCatParams (1, 6, fName)
>>> fparams.GetNumFuncGroups ()

39

>>> fcat=FragmentCatalog.FragCatalog (fparams)

>>> fcgen=FragmentCatalog.FragCatGenerator ()

>>> m = Chem.MolFromSmiles ('OCC=CC (=0)0")

>>> fcgen.AddFragsFromMol (m, fcat)

3

>>> fcat.GetEntryDescription (0)

'C<-0>C"

>>> fcat.GetEntryDescription (1)

'C=C<-C (=0)0>"

>>> fcat.GetEntryDescription (2)

'C<=C (=0) O>=CC<-0>"

The fragments are stored as entries in a FragCatalog. Notice that the entry descriptions include pieces in angular
brackets (e.g. between ‘<’ and ‘>’). These describe the functional groups attached to the fragment. For example, in
the above example, the catalog entry O corresponds to an ethyl fragment with an alcohol attached to one of the carbons
and entry 1 is an ethylene with a carboxylic acid on one carbon. Detailed information about the functional groups can
be obtained by asking the fragment for the ids of the functional groups it contains and then looking those ids up in the
FragCatParams object:

>>> list (fcat.GetEntryFuncGroupIds (2))

[34, 1]

>>> fparams.GetFuncGroup (1)
<rdkit.Chem.rdchem.Mol object at 0x...>

>>> Chem.MolToSmarts (fparams.GetFuncGroup (1))
'«-C(=0)—, : [0&D1]"

>>> Chem.MolToSmarts (fparams.GetFuncGroup (34))

'x—[0&D1]"

>>> fparams.GetFuncGroup(l) .GetProp (' _Name')
'-C(=0)0"'

>>> fparams.GetFuncGroup (34) .GetProp (' _Name')
'70'

The catalog is hierarchical: smaller fragments are combined to form larger ones. From a small fragment, one can find
the larger fragments to which it contributes using the FragCatalog.GetEntryDownlds method:

>>> fcat=FragmentCatalog.FragCatalog (fparams)
>>> m = Chem.MolFromSmiles ('OCC (NCICCLl)CCC")
>>> fcgen.AddFragsFromMol (m, fcat)

15

>>> fcat.GetEntryDescription (0)

'C<-0>C'
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>>> fcat.GetEntryDescription (1)
'CN<-cPropyl>"

>>> list (fcat.GetEntryDownIds (0))
[3, 4]

>>> fcat.GetEntryDescription (3)
'C<-0>CcC'

>>> fcat.GetEntryDescription (4)
'C<-0>CN<-cPropyl>"

The fragments from multiple molecules can be added to a catalog:

>>> suppl = Chem.SmilesMolSupplier ('data/bzr.smi'")
>>> ms = [x for x in suppl]

>>> fcat=FragmentCatalog.FragCatalog (fparams)

>>> for m in ms: nAdded=fcgen.AddFragsFromMol (m, fcat)
>>> fcat.GetNumEntries ()

1169

>>> fcat.GetEntryDescription (0)

ICCI

>>> fcat.GetEntryDescription (100)

'cc—nc (C)n'

The fragments in a catalog are unique, so adding a molecule a second time doesn’t add any new entries:

>>> fcgen.AddFragsFromMol (ms[0], fcat)
0

>>> fcat.GetNumEntries ()

1169

Once a FragCatalog has been generated, it can be used to fingerprint molecules:

>>> fpgen = FragmentCatalog.FragFPGenerator ()

>>> fp = fpgen.GetFPForMol (ms[8], fcat)

>>> fp

<rdkit.DataStructs.cDataStructs.ExplicitBitVect object at O0x...>
>>> fp.GetNumOnBits ()

189

The rest of the machinery associated with fingerprints can now be applied to these fragment fingerprints. For example,
it’s easy to find the fragments that two molecules have in common by taking the intersection of their fingerprints:

>>> fp2 = fpgen.GetFPForMol (ms[7], fcat)
>>> andfp = fp&fp2

>>> obl = list (andfp.GetOnBits())

>>> fcat.GetEntryDescription (obl[-1])
'cce (cc) NC<=0>"

>>> fcat.GetEntryDescription (obl[-5])
'c<-X>ccc (N) cc'!

or we can find the fragments that distinguish one molecule from another:

>>> combinedFp=fps& (fp"fp2) # can be more efficent than fpé&(!fp2)
>>> obl = list (combinedFp.GetOnBits())

>>> fcat.GetEntryDescription(obl[-1])

'ccece (N)ce!

Or we can use the bit ranking functionality from the InfoBitRanker class to identify fragments that distinguish actives
from inactives:
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>>> suppl = Chem.SDMolSupplier ('data/bzr.sdf")

>>> sdms = [x for x in suppl]
>>> fps = [fpgen.GetFPForMol (x, fcat) for x in sdms]
>>> from rdkit.ML.InfoTheory import InfoBitRanker
>>> ranker = InfoBitRanker (len(fps[0]),2)
>>> acts = [float (x.GetProp ('ACTIVITY')) for x in sdms]
>>> for i,fp in enumerate (fps):
act = int (acts[i]>7)

ranker.AccumulateVotes (fp, act)

>>> topb5 = ranker.GetTopN(5)
>>> for id,gain,n0,nl in topb5:

print (int (id),’ '%$gain, int (n0), int (nl))
702 0.081 20 17
328 0.073 23 25
341 0.073 30 43
173 0.073 30 43

1034 0.069 5 53

The columns above are: bitld, infoGain, nlnactive, nActive. Note that this approach isn’t particularly effective for this
artificial example.

3.12 Non-Chemical Functionality

3.12.1 Bit vectors

Bit vectors are containers for efficiently storing a set number of binary values, e.g. for fingerprints. The RDKit includes
two types of fingerprints differing in how they store the values internally; the two types are easily interconverted but
are best used for different purpose:

» SparseBitVects store only the list of bits set in the vector; they are well suited for storing very large, very sparsely
occupied vectors like pharmacophore fingerprints. Some operations, such as retrieving the list of on bits, are
quite fast. Others, such as negating the vector, are very, very slow.

» ExplicitBitVects keep track of both on and off bits. They are generally faster than SparseBitVects, but require
more memory to store.

3.12.2 Discrete value vectors
3.12.3 3D grids

3.12.4 Points

3.13 Getting Help

There is a reasonable amount of documentation available within from the RDKit’s docstrings. These are accessible
using Python’s help command:

>>> m = Chem.MolFromSmiles ('Cclcccccl!')
>>> m.GetNumAtoms ()
5
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>>> help (m.GetNumAtoms)
Help on method GetNumAtoms:

GetNumAtoms (...) method of rdkit.Chem.rdchem.Mol instance
GetNumAtoms ( (Mol)argl [, (int)onlyHeavy=-1 [, (bool)onlyExplicit=True]]) -> int
Returns the number of atoms in the molecule.

ARGUMENTS :
— onlyExplicit: (optional) include only explicit atoms (atoms in the
—molecular graph)
defaults to 1.
NOTE: the onlyHeavy argument 1s deprecated

C++ signature
int GetNumAtoms (RDKit::ROMol [, int=- [,bool=True]])

>>> m.GetNumAtoms (onlyExplicit=False)
15

When working in an environment that does command completion or tooltips, one can see the available methods quite

easily. Here’s a sample screenshot from within the Jupyter notebook:

In [3]: m = Chem.MolFromSmiles('COC1=CC2=C(NC(=N2)[S@@] (=0)CC2=NC=C(C)C(0C)=C2C)C=C1")
m

Out[3]: ?\
iy \
M
In [ 1: m.
m.AddConformer
In [ ]:m.clearCGmputedProps
m.ClearProp
m.Debug
In [ ]:m.GetAromaticAtoms
m.GetAtomWithIdx
In g J: m.GetAtoms
m.GetAtomsMatchingQuery
m.GetBondBetweenAtoms -
In [ 1: 5

3.14 Advanced Topics/Warnings

3.14.1 Editing Molecules

Some of the functionality provided allows molecules to be edited “in place”:

3.14. Advanced Topics/Warnings
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>>> m = Chem.MolFromSmiles ('clcccccl'")

>>> m.GetAtomWithIdx (0) .SetAtomicNum(7)

>>> Chem.SanitizeMol (m)
rdkit.Chem.rdmolops.SanitizeFlags.SANITIZE_NONE
>>> Chem.MolToSmiles (m)

'clccnecel!

Do not forget the sanitization step, without it one can end up with results that look ok (so long as you don’t think):

>>> m = Chem.MolFromSmiles ('clcccccl')
>>> m.GetAtomWithIdx (0) .SetAtomicNum (8)
>>> Chem.MolToSmiles (m)

'clccoccl'!

but that are, of course, complete nonsense, as sanitization will indicate:

>>> Chem.SanitizeMol (m)
Traceback (most recent call last):
File "/usr/lib/python2.6/doctest.py", line 1253, in __run
compileflags, 1) in test.globs
File "<doctest default[0]>", line 1, in <module>
Chem.SanitizeMol (m)
ValueError: Sanitization error: Can't kekulize mol

More complex transformations can be carried out using the RWMol class:

>>> m = Chem.MolFromSmiles ('CC (=0)C=CC=C")
>>> mw = Chem.RWMol (m)

>>> mw.ReplaceAtom (4, Chem.Atom (7))

>>> mw.AddAtom (Chem.Atom (6))

>>> mw.AddAtom (Chem.Atom(6))

>>> mw.AddBond (6, 7, Chem.BondType . SINGLE)
>>> mw.AddBond (7, 8, Chem.BondType .DOUBLE)

>>> mw.AddBond (8, 3, Chem.BondType.SINGLE)

>>> mw.RemoveAtom (0)
>>> mw.GetNumAtoms ()

The RWMol can be used just like an ROMol:

>>> Chem.MolToSmiles (mw)

'O=CC1lC=CC=CN=1"

>>> Chem.SanitizeMol (mw)
rdkit.Chem.rdmolops.SanitizeFlags.SANITIZE_NONE
>>> Chem.MolToSmiles (mw)

'O=Cclccccnl’

It is even easier to generate nonsense using the RWMol than it is with standard molecules. If you need chemically
reasonable results, be certain to sanitize the results.
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3.15 Miscellaneous Tips and Hints

3.15.1 Chem vs AllIChem

The majority of “basic” chemical functionality (e.g. reading/writing molecules, substructure searching, molecu-
lar cleanup, etc.) is in the rdkit.Chem module. More advanced, or less frequently used, functionality is in rd-
kit.Chem.AllChem. The distinction has been made to speed startup and lower import times; there’s no sense in
loading the 2D->3D library and force field implementation if one is only interested in reading and writing a couple of

molecules. If you find the Chem/AllChem thing annoying or confusing, you can use python’s “import ... as ...” syntax
to remove the irritation:

>>> from rdkit.Chem import AllChem as Chem
>>> m = Chem.MolFromSmiles ('CCC")

3.15.2 The SSSR Problem

As others have ranted about with more energy and eloquence than I intend to, the definition of a molecule’s smallest set
of smallest rings is not unique. In some high symmetry molecules, a “true” SSSR will give results that are unappealing.
For example, the SSSR for cubane only contains 5 rings, even though there are “obviously” 6. This problem can be
fixed by implementing a small (instead of smallest) set of smallest rings algorithm that returns symmetric results. This
is the approach that we took with the RDK:it.

Because it is sometimes useful to be able to count how many SSSR rings are present in the molecule, there is a
GetSSSR function, but this only returns the SSSR count, not the potentially non-unique set of rings.

3.16 List of Available Descriptors

Descriptor/Descriptor Family Notes Language

Gasteiger/Marsili Partial Charges Tetrahedron 36:3219-28 (1980) C++

BalabanJ Chem. Phys. Lett. 89:399-404 | Python
(1982)

BertzCT J. Am. Chem. Soc. 103:3599-601 | Python
(1981)

Ipc J. Chem. Phys. 67:4517-33 (1977) Python

HallKierAlpha Rev. Comput. Chem. 2:367-422 | C++
(1991)

Kappal - Kappa3 Rev.  Comput. Chem. 2:367-422 | C++
(1991)

Chi0, Chil Rev.  Comput. Chem. 2:367-422 | Python
(1991)

ChiOn - Chi4n Rev. Comput. Chem. 2:367-422 | C++
(1991)

ChiOv - Chidv Rev. Comput. Chem. 2:367-422 | C++
(1991)

MolLogP Wildman and Crippen JCICS 39:868- | C++
73 (1999)

MoIMR Wildman and Crippen JCICS 39:868- | C++
73 (1999)

MolWt C++

Continued on next page
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Table 3.1 — continued from previous page

ExactMolWt C++

Heavy AtomCount C++

HeavyAtomMolWt C++

NHOHCount C++

NOCount C++

NumHAcceptors C++

NumHDonors C++

NumHeteroatoms C++

NumRotatableBonds C++

NumValenceElectrons C++

NumAmideBonds C++

Num{ Aromatic,Saturated,Aliphatic } Rings C++

Num{Aromatic,Saturated,Aliphatic } { Hetero,Carbo }cycles C++

RingCount C++

FractionCSP3 C++

NumSpiroAtoms C++

Number of spiro atoms
(atoms shared between rings that
share exactly one atom)

NumBridgehead Atoms Number of bridgehead atoms (atoms | C++
shared between rings that share at
least two bonds)

TPSA J. Med. Chem. 43:3714-7, (2000) C++

LabuteASA J. Mol. Graph. Mod. 18:464-77 | C++
(2000)

PEOE_VSAL1 - PEOE_VSA14 MOE-type descriptors using partial | C++
charges and surface area contri-
butions http://www.chemcomp.com/
journal/vsadesc.htm

SMR_VSAI - SMR_VSAIO MOE-type descriptors using MR | C++
contributions and surface area contri-
butions http://www.chemcomp.com/
journal/vsadesc.htm

SlogP_VSAL - SlogP_VSAI2 MOE-type descriptors using LogP | C++
contributions and surface area contri-
butions http://www.chemcomp.com/
journal/vsadesc.htm

EState_ VSA1 - EState_VSA11 MOE-type descriptors using EState | Python
indices and surface area contributions
(developed at RD, not described in
the CCG paper)

VSA_EStatel - VSA_EState10 MOE-type descriptors using EState | Python
indices and surface area contributions
(developed at RD, not described in
the CCG paper)

MQNs Nguyen et al. ChemMedChem | C++
4:1803-5 (2009)

Topliss fragments implemented using a set of | Python

SMARTS definitions in $(RD-
BASE)/Data/FragmentDescriptors.csv
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3.17 List of Available Fingerprints

Fingerprint Notes Lan-
Type guage
RDKit a Daylight-like fingerprint based on hashing molecular subgraphs C++
Atom Pairs JCICS 25:64-73 (1985) C++
Topological JCICS 27:82-5 (1987) C++
Torsions

MACKCS keys | Using the 166 public keys implemented as SMARTS C++
Mor- Fingerprints based on the Morgan algorithm, similar to the ECFP/FCFP fingerprints C++
gan/Circular JCIM 50:742-54 (2010).

2D Pharma- Uses topological distances between pharmacophoric points. C++
cophore

Pattern a topological fingerprint optimized for substructure screening C++
Extended Derived from the ErG fingerprint published by Stiefl et al. in JCIM 46:208-20 (2006). C++
Reduced NOTE: these functions return an array of floats, not the usual fingerprint types

Graphs

3.18 Feature Definitions Used in the Morgan Fingerprints

These are adapted from the definitions in Gobbi, A. & Poppinger, D. “Genetic optimization of combinatorial libraries.”
Biotechnology and Bioengineering 61, 47-54 (1998).

Fea- SMARTS

ture

Donor | [$([N; 'HO;v3,v4&+1]),$([0,S;H1;+0]),n&H1&+0]

Ac- [S([0,8;HL;v2;!$ (x—*=[O,N,P,S])]),%$([0,5;H0;v2]),S$([0,8;-1),$([N;v3;!$(N-»=[O,N,P,S
cep-

tor

Aro- [a]

matic

Halo- [F,Cl,Br, I]

gen

Basic [(#7;+,S([N;H2&+0] [$([C,al);!S([C,al(=0))1),$ ([N;HL&+0] ([S([C,al);!$([C,al (=0))1)[S(
Acidic| [$([C,S](=[0,S,P])-[0;H1,-11)1

3.19 License

©00]

This document is copyright (C) 2007-2015 by Greg Landrum

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 543 Howard Street, 5th
Floor, San Francisco, California, 94105, USA.

The intent of this license is similar to that of the RDK:it itself. In simple words: “Do whatever you want with it, but
please give us some credit.”
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CHAPTER
FOUR

THE RDKIT BOOK

4.1 Misc Cheminformatics Topics

4.1.1 Aromaticity

Aromaticity is one of those unpleasant topics that is simultaneously simple and impossibly complicated. Since neither
experimental nor theoretical chemists can agree with each other about a definition, it’s necessary to pick something
arbitrary and stick to it. This is the approach taken in the RDKit.

Instead of using patterns to match known aromatic systems, the aromaticity perception code in the RDKit uses a set of
rules. The rules are relatively straightforward.

Aromaticity is a property of atoms and bonds in rings. An aromatic bond must be between aromatic atoms, but a bond
between aromatic atoms does not need to be aromatic.

For example the fusing bonds here are not considered to be aromatic by the RDKit:

= ~
= ==

>>> from rdkit import Chem
>>> m = Chem.MolFromSmiles ('C1=CC2=C (C=Cl)Cl=CC=CC=C21")
>>> m.GetAtomWithIdx (3) .GetIsAromatic ()

True

>>> m.GetAtomWithIdx (6) .GetIsAromatic ()

True

>>> m.GetBondBetweenAtoms (3, 6) .GetIsAromatic ()
False

A ring, or fused ring system, is considered to be aromatic if it obeys the 4N+2 rule. Contributions to the electron count
are determined by atom type and environment. Some examples:
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Fragment | Number of pi electrons
c(a)a
n(a)a
An(a)a
o(a)a
s(a)a
se(a)a
te(a)a
O=c(a)a
N=c(a)a 0

*(a)a 0,1,0or2

O N N | = —

Notation a: any aromatic atom; A: any atom, include H; *: a dummy atom

Notice that exocyclic bonds to electronegative atoms “steal” the valence electron from the ring atom and that dummy
atoms contribute whatever count is necessary to make the ring aromatic.

The use of fused rings for aromaticity can lead to situations where individual rings are not aromatic, but the fused
system is. An example of this is azulene:

An extreme example, demonstrating both fused rings and the influence of exocyclic double bonds:

0

0

>>> m=Chem.MolFromSmiles ('O=C1C=CC (=0)C2=C10C=C02")
>>> m.GetAtomWithIdx (6) .GetIsAromatic ()

True

>>> m.GetAtomWithIdx (7) .GetIsAromatic ()

True

>>> m.GetBondBetweenAtoms (6, 7) .GetIsAromatic ()
False

A special case, heteroatoms with radicals are not considered candidates for aromaticity:
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>>> m = Chem.MolFromSmiles ('C1=C[N]C=C1l")
>>> m.GetAtomWithIdx (0) .GetIsAromatic ()

False

>>> m.GetAtomWithIdx (2) .GetIsAromatic ()

False

>>> m.GetAtomWithIdx (2) .GetNumRadicalElectrons ()
1

Carbons with radicals, however, are still considered:

>>> m = Chem.MolFromSmiles ('Cl=[C]NC=C1")
>>> m.GetAtomWithIdx (0) .GetIsAromatic ()

True

>>> m.GetAtomWithIdx (1) .GetIsAromatic ()

True

>>> m.GetAtomWithIdx (1) .GetNumRadicalElectrons ()
1

Note: For reasons of computation expediency, aromaticity perception is only done for fused-ring systems where all
members are at most 24 atoms in size.
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4.1.2 Ring Finding and SSSR

[Section taken from “Getting Started” document]

As others have ranted about with more energy and eloquence than I intend to, the definition of a molecule’s smallest set
of smallest rings is not unique. In some high symmetry molecules, a “true” SSSR will give results that are unappealing.
For example, the SSSR for cubane only contains 5 rings, even though there are “obviously” 6. This problem can be
fixed by implementing a small (instead of smallest) set of smallest rings algorithm that returns symmetric results. This
is the approach that we took with the RDK:it.

Because it is sometimes useful to be able to count how many SSSR rings are present in the molecule, there is a
GetSSSR function, but this only returns the SSSR count, not the potentially non-unique set of rings.

4.2 Chemical Reaction Handling

4.2.1 Reaction SMARTS

Not SMIRKS ! , not reaction SMILES 2, derived from SMARTS °.

The general grammar for a reaction SMARTS is :

reaction n= reactants ~ ' >>'' products
reactants = molecules
products = molecules
molecules = molecule
molecules ''.'' molecule
molecule = a valid SMARTS string without ''.'' characters
“(''" a valid SMARTS string without ''.'' characters '')'"''

Some features

Mapped dummy atoms in the product template are replaced by the corresponding atom in the reactant:

>>> from rdkit.Chem import AllChem

>>> rxn = AllChem.ReactionFromSmarts (' [C:1]=[0,N:2]>>[C:1][%:2]")

>>> [Chem.MolToSmiles (x,1) for x in rxn.RunReactants((Chem.MolFromSmiles ('CC=0
—='"),))[0]]

["CCO']

>>> [Chem.MolToSmiles (x,1) for x in rxn.RunReactants ((Chem.MolFromSmiles ('CC=N
—="),))[0]]

["CCN']

but unmapped dummy atoms are left as dummies:

>>> rxn = AllChem.ReactionFromSmarts (' [C:1]=[0,N:2]>>[*][C:1][*:2]1")
>>> [Chem.MolToSmiles (x,1) for x in rxn.RunReactants((Chem.MolFromSmiles ('CC=0
—="),))[0]]

["[x]C(C)O"]

! http://www.daylight.com/dayhtml/doc/theory/theory.smirks.html
2 http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
3 http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html

66 Chapter 4. The RDKit Book



http://www.daylight.com/dayhtml/doc/theory/theory.smirks.html
http://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html

RDKit Documentation, Release 2016.03.1

“Any” bonds in the products are replaced by the corresponding bond in the reactant:

>>> rxn = AllChem.ReactionFromSmarts (' [C:1]~[O,N:2]>>[*][C:1]~[%:2]")
>>> [Chem MolToSmiles (x,1) for x in rxn.RunReactants ((Chem.MolFromSmiles ('C=0"),))[0]]
*]C=0"]
[Chem MolToSmiles (x,1) for x in rxn.RunReactants ((Chem.MolFromSmiles ('CO"),)) [0]]
['[+x]CO"]
[Chem MolToSmiles (x,1) for x in rxn.RunReactants ((Chem.MolFromSmiles ('"C#N'),)) [0]]
]

["[*]C#N"]

Intramolecular reactions can be expressed flexibly by including reactants in parentheses. This is demonstrated in this
ring-closing metathesis example *

>>> rxn = AllChem.ReactionFromSmarts (" ([C:1]1=[C;H2].[C:2]=[C;H2])>>[%:1]=[%:2]")
>>> ml = Chem.MolFromSmiles ('C=CCOCC=C")

>>> ps = rxn.RunReactants((ml,))

>>> Chem.MolToSmiles (ps[0][0])

'Cl=Cccoc1l"

Chirality

This section describes how chirality information in the reaction defition is handled. A consistent example, esterification
of secondary alcohols, is used throughout >.

If no chiral information is present in the reaction definition, the stereochemistry of the reactants is preserved:

>>> alcoholl = Chem.MolFromSmiles ('CC (CCN)O")

>>> alcohol2 = Chem.MolFromSmiles ('C[C@H] (CCN)O")
>>> glcohol3 = Chem. MolFromSmlles('C[C@@H[(CCN)O')
>>> acid = Chem.MolFromSmiles ('CC(=0)0")

>>> rxn = AllChem.ReactionFromSmarts( [CH1:1][OH:2].[OH] [C:3]=[0:4]1>>[C:1][0:2][C
—3]=[0:41")

>>> ps=rxn.RunReactants ((alcoholl,acid))
>>> Chem.MolToSmiles (ps[0][0], True)
'CC(=0)0C (C)CCN'

>>> ps=rxn.RunReactants ((alcohol2,acid))
>>> Chem.MolToSmiles (ps[0][0], True)
'CC(=0)0[CRH] (C)CCN!

>>> ps=rxn.RunReactants ((alcohol3, acid))
>>> Chem.MolToSmiles (ps[0][0], True)
'CC(=0)0[C@EH] (C)CCN'

You get the same result (retention of stereochemistry) if a mapped atom has the same chirality in both reactants and
products:

>>> rxn = AllChem.ReactionFromSmarts (' [C@H1:1][OH:2].[0OH] [C:3]=[0:4]>>[C@:1][0:2]][C:
—=3]=[0:4]")

>>> ps=rxn.RunReactants ((alcoholl,acid))

>>> Chem.MolToSmiles (ps[0][0], True)

'CC(=0)0oC (C)ceCn!

>>> ps=rxn.RunReactants ((alcohol2,acid))

>>> Chem.MolToSmiles (ps[0][0], True)

'CC(=0)0[CQH] (C)CCN'

>>> ps=rxn.RunReactants ((alcohol3,acid))

4 Thanks to James Davidson for this example.
5 Thanks to JP Ebejer and Paul Finn for this example.
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>>> Chem.MolToSmiles (ps[0][0],True)
'CC(=0)0O[CQEH] (C)CCN'

A mapped atom with different chirality in reactants and products leads to inversion of stereochemistry:

>>> rxn = AllChem.ReactionFromSmarts (' [CCeH1:1][OH:2].[0OH] [C:3]1=[0:4]>>[CQE:1][0:2][C:
—3]=[0:41")

>>> ps=rxn.RunReactants ((alcoholl,acid))
>>> Chem.MolToSmiles (ps[0][0], True)
'CC(=0)0C (C)CCN'

>>> ps=rxn.RunReactants ((alcohol2,acid))
>>> Chem.MolToSmiles (ps[0][0], True)
'CC(=0)0[C@EH] (C)CCN'

>>> ps=rxn.RunReactants ((alcohol3, acid))
>>> Chem.MolToSmiles (ps[0][0], True)
'CC(=0)0[CRH] (C)CCN!

If a mapped atom has chirality specified in the reactants, but not in the products, the reaction destroys chirality at that
center:

>>> rxn = AllChem.ReactionFromSmarts (' [CEHL:1][OH:2].[OH][C:3]=[0:4]>>[C:1][0:2][C:
—3]=[0:41")

>>> ps=rxn.RunReactants ((alcoholl,acid))
>>> Chem.MolToSmiles (ps[0][0], True)
'CC(=0)0C (C)CCN'

>>> ps=rxn.RunReactants ((alcohol2,acid))
>>> Chem.MolToSmiles (ps[0][0], True)
'CC(=0)0C (C)CCN'

>>> ps=rxn.RunReactants ((alcohol3,acid))
>>> Chem.MolToSmiles (ps[0][0], True)
'CC(=0)0C (C)CCN'

And, finally, if chirality is specified in the products, but not the reactants, the reaction creates a stereocenter with the
specified chirality:

>>> rxn = AllChem.ReactionFromSmarts (' [CHL:1][OH:2].[OH][C:3]=[0:4]>>[C@:1][0:2][C:
—3]=[0:41")

>>> ps=rxn.RunReactants ((alcoholl,acid))
>>> Chem.MolToSmiles (ps[0][0], True)
'CC(=0)O0[CRH] (C)CCN'

>>> ps=rxn.RunReactants ((alcohol2,acid))
>>> Chem.MolToSmiles (ps[0][0], True)
'CC(=0)O[CRH] (C)CCN'

>>> ps=rxn.RunReactants ((alcohol3,acid))
>>> Chem.MolToSmiles (ps[0][0], True)
'CC(=0)O0[CRH] (C)CCN'

Note that this doesn’t make sense without including a bit more context around the stereocenter in the reaction defini-
tion:

>>> rxn = AllChem.ReactionFromSmarts (' [CH3:5][CH1:1] ([C:6])[OH:2].[0OH][C:3]=[0:4]1>>[C:
5] [CQR:1] ([C:6])[0:2][C:3]=[0:41")

>>> ps=rxn.RunReactants ((alcoholl, acid))

>>> Chem.MolToSmiles (ps[0][0], True)

'CC(=0)0O[CRH] (C)CCN'

>>> ps=rxn.RunReactants ((alcohol2,acid))

>>> Chem.MolToSmiles (ps[0][0], True)

'CC(=0)0[CRH] (C)CCN'
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>>> ps=rxn.RunReactants ((alcohol3, acid))
>>> Chem.MolToSmiles (ps[0][0], True)
'CC(=0)O0[CRH] (C)CCN'

Note that the chirality specification is not being used as part of the query: a molecule with no chirality specified can
match a reactant with specified chirality.

In general, the reaction machinery tries to preserve as much stereochemistry information as possible. This works when
a single new bond is formed to a chiral center:

>>> rxn = AllChem.ReactionFromSmarts('[C:1][C:2]-0>>[C:1][C:2]-S")
>>> alcohol2 = Chem.MolFromSmiles ('C[CQEH] (O)CCN")

>>> ps=rxn.RunReactants ((alcohol?2,))

>>> Chem.MolToSmiles (ps[0][0], True)

"C[CQQH] (S)CCN"'

But it fails if two or more bonds are formed:

>>> rxn = AllChem.ReactionFromSmarts (' [C:1][C:2] (-0)-F>>[C:1][C:2](-S)—-C1l")
>>> alcohol = Chem.MolFromSmiles ('C[CRRH] (O)F")

>>> ps=rxn.RunReactants ((alcohol,))

>>> Chem.MolToSmiles (ps[0] [0], True)

'CC(S)Cl”

In this case, there’s just not sufficient information present to allow the information to be preserved. You can help by
providing mapping information:

Rules and caveats

1. Include atom map information at the end of an atom query. So do [C,N,O:1] or [C;R:1].

2. Don’t forget that unspecified bonds in SMARTS are either single or aromatic. Bond orders in product templates
are assigned when the product template itself is constructed and it’s not always possible to tell if the bond should
be single or aromatic:

>>> rxn = AllChem.ReactionFromSmarts (' [#6:1] [#7,#8:2]1>>[#6:1]1[#6:2]1")

>>> [Chem.MolToSmiles (x,1) for x in rxn.RunReactants ((Chem.MolFromSmiles ('CINCCCC1L
—="),))[0]]

[rCc1lcceeclt]

>>> [Chem.MolToSmiles (x,1) for x in rxn.RunReactants ((Chem.MolFromSmiles ('clnccccl
—='"),))[0]]

["clccecece—-1"]

So if you want to copy the bond order from the reactant, use an “Any” bond:

>>> rxn = AllChem.ReactionFromSmarts (' [#6:1] [#7,#8:2]1>>[#6:1]~[#6:2]")
>>> [Chem.MolToSmiles (x,1) for x in rxn.RunReactants ((Chem.MolFromSmiles ('clnccccl

—="),))[0]]
["clcceceel!']

4.3 The Feature Definition File Format

An FDef file contains all the information needed to define a set of chemical features. It contains definitions of feature
types that are defined from queries built up using Daylight’'s SMARTS language. > The FDef file can optionally also
include definitions of atom types that are used to make feature definitions more readable.
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4.3.1 Chemical Features

Chemical features are defined by a Feature Type and a Feature Family. The Feature Family is a general classification
of the feature (such as “Hydrogen-bond Donor” or “Aromatic”) while the Feature Type provides additional, higher-
resolution, information about features. Pharmacophore matching is done using Feature Family’s. Each feature type
contains the following pieces of information:

* A SMARTS pattern that describes atoms (one or more) matching the feature type.

* Weights used to determine the feature’s position based on the positions of its defining atoms.

4.3.2 Syntax of the FDef file

AtomType definitions

An AtomType definition allows you to assign a shorthand name to be used in place of a SMARTS string defining an
atom query. This allows FDef files to be made much more readable. For example, defining a non-polar carbon atom
like this:

AtomType Carbon_NonPolar [C&!$(C=[O,N,P,S])&!S$ (C#N)]

creates a new name that can be used anywhere else in the FDef file that it would be useful to use this SMARTS. To
reference an AtomType, just include its name in curly brackets. For example, this excerpt from an FDef file defines
another atom type - Hphobe - which references the Carbon_NonPolar definition:

AtomType Carbon_NonPolar [C&!$(C=[0O,N,P,S])&!S$ (C#N)]
AtomType Hphobe [{Carbon_NonPolar},c,s,S&H0&v2,F,Cl,Br,I]

Note that {Carbon_NonPolar} is used in the new AtomType definition without any additional decoration (no
square brackes or recursive SMARTS markers are required).

Repeating an AtomType results in the two definitions being combined using the SMARTS .’ (or) operator. Here’s an
example:

AtomType dl [N&!HO]
AtomType dl [O&!'HO]

This is equivalent to:

’AtomType dl [N&!HO,O&!HO]

Which is equivalent to the more efficient:

’AtomType dl [N, O; 'HO]

Note that these examples tend to use SMARTS’s high-precendence and operator “&” and not the low-precedence and
;7. This can be important when AtomTypes are combined or when they are repeated. The SMARTS ”,” operator is

99,99 99,99

higher precedence than ”;”, so definitions that use ;" can lead to unexpected results.

It is also possible to define negative AtomType queries:

AtomType dl [N,O,S]
AtomType !dl [HO]

The negative query gets combined with the first to produce a definition identical to this:
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AtomType dl [!HO;N,O,S]

Note that the negative AtomType is added to the beginning of the query.

Feature definitions

A feature definition is more complex than an AtomType definition and stretches across multiple lines:

DefineFeature HDonorl [N, O; 'HO]
Family HBondDonor

Weights 1.0

EndFeature

The first line of the feature definition includes the feature type and the SMARTS string defining the feature. The next
two lines (order not important) define the feature’s family and its atom weights (a comma-delimited list that is the same
length as the number of atoms defining the feature). The atom weights are used to calculate the feature’s locations
based on a weighted average of the positions of the atom defining the feature. More detail on this is provided below.
The final line of a feature definition must be EndFeature. It is perfectly legal to mix AtomType definitions with feature
definitions in the FDef file. The one rule is that AtomTypes must be defined before they are referenced.

Additional syntax notes:

* Any line that begins with a # symbol is considered a comment and will be ignored.

¢ A backslash character, , at the end of a line is a continuation character, it indicates that the data from that line
is continued on the next line of the file. Blank space at the beginning of these additional lines is ignored. For
example, this AtomType definition:

AtomType tButylAtom [$([C; !R] (-=[CH3]) (-[CH3]) (-[CH3])),\
$([CH3] (- [C; !R]I (-[CH3]) (-[CH31)))]

is exactly equivalent to this one:

AtomType tButylAtom [$([C;!R] (-[CH3]) (-[CH3]) (-[CH31)),$([CH3] (-[C;'R] (-[CH3]) (-
—[CH3]))) 1

(though the first form is much easier to read!)

Atom weights and feature locations

4.3.3 Frequently Asked Question(s)

* What happens if a Feature Type is repeated in the file? Here’s an example:

DefineFeature HDonorl [0O&!HO]
Family HBondDonor

Weights 1.0

EndFeature

DefineFeature HDonorl [N&!HO]
Family HBondDonor

Weights 1.0

EndFeature
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In this case both definitions of the HDonorl feature type will be active. This is functionally identical to:

DefineFeature HDonorl [O,N; !'HO]
Family HBondDonor

Weights 1.0

EndFeature

However the formulation of this feature definition with a duplicated feature type is considerably less efficient
and more confusing than the simpler combined definition.

4.4 Representation of Pharmacophore Fingerprints

In the RDKit scheme the bit ids in pharmacophore fingerprints are not hashed: each bit corresponds to a particular
combination of features and distances. A given bit id can be converted back to the corresponding feature types and
distances to allow interpretation. An illustration for 2D pharmacophores is shown in Figure 1: Bit numbering in

pharmacophore fingerprints.

Example: Signature from:
2 Patterns
2 - 3 point pharmacophores
2 distance bins (1,3),(3,8)

Total Signature Size: 38 bits

2 point pharmacophores:

Combos: AA, AB, BB

2 bits/pharmacophore (1 distance with 2 bins)
Total: 6 bits

3 point pharmacophores:

Combos: AAA, AAB, ABB, BBB

8 bits/pharmacophore (3 distances with 2 bins)

Total: 32 bits

[T

Example: Signature from:
2 Patterns
2 - 3 point pharmacophores
3 distance bins (1,2),(2,5),(5,8)

Total Signature Size: 105 bits

@
@
)

2 point pharmacophores:
Combos: AA, AB, BB
3 bits/pharmacophore (1 distance with 2 bins)

Total: 9 bits

3 point pharmacophores:
Combos: AAA, AAB, ABB, BBB
24 bits/pharmacophore (see below)

Total: 96 bits

Allowed distance bins for 3 point:

(0,0,0),(0,0,1),(0,1,0), (0, 1 1), (0, 1,
(1,0,0),(1,0,1),(1,0,2),(1,1,0), (1,
(1,2,1),(1,2,2),(2,0,1),(2,0,2), (2,1,

1,2),(0,2,1),(0,2,2),
1,1),(1,1,2),(1,2,0),
1,0),(2,1,1),(2,1,2),

(2,2,0),(22,1),2,22)
Eliminated via triangle inequality:

(0,0,2),(0,2,0),(2,0,0)

g 2 % g

Fig. 4.1: Figure 1: Bit numbering in pharmacophore fingerprints

2

4.5 Atom-Atom Matching in Substructure Queries

When doing substructure matches for queries derived from SMARTS the rules for which atoms in the molecule should
match which atoms in the query are well defined.[#smarts]_ The same is not necessarily the case when the query

molecule is derived from a mol block or SMILES.
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The general rule used in the RDKit is that if you don’t specify a property in the query, then it’s not used as part of the
matching criteria and that Hs are ignored. This leads to the following behavior:

Molecule | Query Match

CCO CCO Yes
CC[O-] CCO Yes
CCO CC[O-] No

CC[O-] CC[O-] Yes
CC[O-] CC[OH] | Yes
CCOC CC[OH] | Yes

CCoC CCO Yes
CCC CCcC Yes
CC[14C] | CCC Yes
CCC CC[14C] | No
CC[14C] | CC[14C] | Yes
0CO C Yes
0CO [CH] No
0CO [CH2] No
0OCO [CH3] No
0CO O[CH3] | Yes
O[CH2]O | C Yes

O[CH2]O | [CH2] No

Demonstrated here:

>>> Chem.MolFromSmiles ('CCO'") .HasSubstructMatch (Chem.MolFromSmiles ('CCO"))
True

>>> Chem.MolFromSmiles ('CC[O-]") .HasSubstructMatch (Chem.MolFromSmiles ('CCO"))
True

>>> Chem.MolFromSmiles ('CCO'") .HasSubstructMatch (Chem.MolFromSmiles ('CC[O-]"))
False

>>> Chem.MolFromSmiles ('CC[O—]") .HasSubstructMatch (Chem.MolFromSmiles ('CC[O-]"))
True

>>> Chem.MolFromSmiles ('CC[O-]") .HasSubstructMatch (Chem.MolFromSmiles ('CC[OH] "))
True

>>> Chem.MolFromSmiles ('CCOC'") .HasSubstructMatch (Chem.MolFromSmiles ('CC[OH] "))
True

>>> Chem.MolFromSmiles ('CCOC'") .HasSubstructMatch (Chem.MolFromSmiles ('CCO"))
True

>>> Chem.MolFromSmiles ('CCC'") .HasSubstructMatch (Chem.MolFromSmiles ('CCC"))
True

>>> Chem.MolFromSmiles ('CC[14C]") .HasSubstructMatch (Chem.MolFromSmiles ('CCC'"))
True

>>> Chem.MolFromSmiles ('CCC'") .HasSubstructMatch (Chem.MolFromSmiles ('CC[14C] "))
False

>>> Chem.MolFromSmiles ('CC[14C] ") .HasSubstructMatch (Chem.MolFromSmiles ('CC[14C]"))
True

>>> Chem.MolFromSmiles ('OCO'") .HasSubstructMatch (Chem.MolFromSmiles ('C'))

True

>>> Chem.MolFromSmiles ('OCO") .HasSubstructMatch (Chem.MolFromSmiles (' [CH] "))
False

>>> Chem.MolFromSmiles ('OCO'") .HasSubstructMatch (Chem.MolFromSmiles (' [CH2] "))
False

>>> Chem.MolFromSmiles ('OCO'") .HasSubstructMatch (Chem.MolFromSmiles (' [CH3] "))
False

>>> Chem.MolFromSmiles ('OCO") .HasSubstructMatch (Chem.MolFromSmiles ('O[CH3] "))
True
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>>> Chem.MolFromSmiles ('O[CH2]0"'") .HasSubstructMatch (Chem.MolFromSmiles ('C"))

True

>>> Chem.MolFromSmiles ('O[CH2]0"') .HasSubstructMatch (Chem.MolFromSmiles (' [CH2] "))
False

4.6 Molecular Sanitization

The molecule parsing functions all, by default, perform a “sanitization” operation on the molecules read. The idea
is to generate useful computed properties (like hybridization, ring membership, etc.) for the rest of the code and to
ensure that the molecules are “reasonable”: that they can be represented with octet-complete Lewis dot structures.

Here are the steps involved, in order.

1.

2.

10.
11.

clearComputedProps: removes any computed properties that already exist on the molecule and its
atoms and bonds. This step is always performed.

cleanUp: standardizes a small number of non-standard valence states. The clean up operations are:

* Neutral 5 valent Ns with double bonds to Os are converted to the zwitterionic form. Example: N (=0) =0
-> [N+] (=0)0-1]

e Neutral 5 valent Ns with triple bonds to another N are converted to the zwitterionic form. Example:
C-N=N#N -> C-N=[N+]=[N-]

* Neutral 5 valent phosphorus with one double bond to an O and another to either a C or a P are converted
to the zwitterionic form. Example: C=P (=0) 0 —> C=[P+] ([0-])0O

¢ Neutral Cl, Br, or I with exclusively O neighbors, and a valence of 3, 5, or 7, are converted to the zwitteri-
onic form. This covers things like chlorous acid, chloric acid, and perchloric acid. Example: O=C1 (=0) O
-> [0O-][Cl+2][0-]0O

This step should not generate execptions.

updatePropertyCache: calculates the explicit and implicit valences on all atoms. This generates excep-
tions for atoms in higher-than-allowed valence states. This step is always performed, but if it is “skipped” the
test for non-standard valences will not be carried out.

symmetrizeSSSR: calls the symmetrized smallest set of smallest rings algorithm (discussed in the Getting
Started document).

Kekulize: converts aromatic rings to their Kekule form. Will raise an exception if a ring cannot be kekulized
or if aromatic bonds are found outside of rings.

assignRadicals: determines the number of radical electrons (if any) on each atom.

setAromaticity: identifies the aromatic rings and ring systems (see above), sets the aromatic flag on atoms
and bonds, sets bond orders to aromatic.

setConjugation: identifies which bonds are conjugated
setHybridization: calculates the hybridization state of each atom
cleanupChirality: removes chiral tags from atoms that are not sp3 hybridized.

adjustHs: adds explicit Hs where necessary to preserve the chemistry. This is typically needed for het-
eroatoms in aromatic rings. The classic example is the nitrogen atom in pyrrole.

The individual steps can be toggled on or off when calling Mo1Ops: : sanitizeMol or Chem.SanitizeMol.
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4.7 Implementation Details

4.7.1 “Magic” Property Values

The following property values are regularly used in the RDKit codebase and may be useful to client code.

ROMol (Mol in Python)

Property Name Use

MolFileComments Read from/written to the comment line of CTABs.
MolFilelnfo Read from/written to the info line of CTABs.
_MolFileChiralFlag Read from/written to the chiral flag of CTABs.
_Name Read from/written to the name line of CTABs.
_smilesAtomOutputOrder | The order in which atoms were written to SMILES

Atom
Property Name | Use
_CIPCode the CIP code (R or S) of the atom
_CIPRank the integer CIP rank of the atom
_ChiralityPossi- set if an atom is a possible chiral center
ble
_MolFileRLabel | integer R group label for an atom, read from/written to CTABs.
_ReactionDe- set on an atom in a product template of a reaction if its degree changes in the reaction
greeChanged
_protected atoms with this property set will not be considered as matching reactant queries in reactions
dummyLabel (on dummy atoms) read from/written to CTABs as the atom symbol
molAtomMap- the atom map number for an atom, read from/written to SMILES and CTABs
Number
molfileAlias the mol file alias for an atom (follows A tags), read from/written to CTABs
molFileValue the mol file value for an atom (follows V tags), read from/written to CTABs
molFilelnver- used to flag whether stereochemistry at an atom changes in a reaction, read from/written to
sionFlag CTABSs, determined automatically from SMILES
molRxnCompo- | which component of a reaction an atom belongs to, read from/written to CTABs
nent
molRxnRole which role an atom plays in a reaction (1=Reactant, 2=Product, 3=Agent), read from/written
to CTABs
smilesSymbol determines the symbol that will be written to a SMILES for the atom

4.7.2 Thread safety and the RDKit

While writing the RDKit, we did attempt to ensure that the code would work in a multi-threaded environment by
avoiding use of global variables, etc. However, making code thread safe is not a completely trivial thing, so there are
no doubt some gaps. This section describes which pieces of the code base have explicitly been tested for thread safety.

Note: With the exception of the small number of methods/functions that take a numThreads argument, this
section does not apply to using the RDKit from Python threads. Boost.Python ensures that only one thread
is calling into the C++ code at any point. To get concurrent execution in Python, use the multiprocessing mod-
ule or one of the other standard python approaches for this .
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What has been tested

* Reading molecules from SMILES/SMARTS/Mol blocks

* Writing molecules to SMILES/SMARTS/Mol blocks

* Generating 2D coordinates

* Generating 3D conformations with the distance geometry code

* Optimizing molecules with UFF or MMFF

* Generating fingerprints

* The descriptor calculators in $SRDBASE/Code/GraphMol/Descriptors

 Substructure searching (Note: if a query molecule contains recursive queries, it may not be safe to use it con-
currently on multiple threads, see below)

* The Subgraph code

¢ The ChemTransforms code

* The chemical reactions code

* The Open3DAlign code

* The MolDraw2D drawing code

Known Problems

 InChl generation and (probably) parsing. This seems to be a limitation of the [UPAC InChlI code. In order to
allow the code to be used in a multi-threaded environment, a mutex is used to ensure that only one thread is using
the JUPAC code at a time. This is only enabled if the RDKit is built with the RDK_TEST_MULTITHREADED
option enabled.

* The MolSuppliers (e.g. SDMolSupplier, SmilesMolSupplier?) change their internal state when a molecule is
read. It is not safe to use one supplier on more than one thread.

* Substructure searching using query molecules that include recursive queries. The recursive queries modify their
internal state when a search is run, so it’s not safe to use the same query concurrently on multiple threads. If the
code is built using the RDK_BUILD_THREADSAFE_SSS argument (the default for the binaries we provide), a
mutex is used to ensure that only one thread is using a given recursive query at a time.

4.8 License

©00]

This document is copyright (C) 2007-2016 by Greg Landrum

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 543 Howard Street, Sth
Floor, San Francisco, California, 94105, USA.

The intent of this license is similar to that of the RDKit itself. In simple words: “Do whatever you want with it, but
please give us some credit.”
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CHAPTER
FIVE

RDKIT COOKBOOK

5.1 What is this?

This document provides examples of how to carry out particular tasks using the RDKit functionality from Python. The
contents have been contributed by the RDKit community.

If you find mistakes, or have suggestions for improvements, please either fix them yourselves in the source document
(the .rst file) or send them to the mailing list: rdkit-discuss @lists.sourceforge.net (you will need to subscribe first)

5.2 Miscellaneous Topics

5.2.1 Using a different aromaticity model
By default, the RDK:it applies its own model of aromaticity (explained in the RDKit Theory Book) when it reads in
molecules. It is, however, fairly easy to override this and use your own aromaticity model.

The easiest way to do this is it provide the molecules as SMILES with the aromaticity set as you would prefer to have
it. For example, consider indole:
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OH

By default the RDKit considers both rings to be aromatic:

>>> from rdkit import Chem

>>> m = Chem.MolFromSmiles ('N1C=Cc2cccccl2")

>>> m.GetSubstructMatches (Chem.MolFromSmarts ('c'))
((1,), (2,), (3,), (4,), (5,), (6,), (7,), (8,))

If you’d prefer to treat the five-membered ring as aliphatic, which is how the input SMILES is written, you just need
to do a partial sanitization that skips the kekulization and aromaticity perception steps:

>>> m2 = Chem.MolFromSmiles ('N1C=Cc2cccccl?2',sanitize=False)

>>> Chem.SanitizeMol (m2, sanitizeOps=Chem.SanitizeFlags.SANITIZE_ALL"Chem.

—~SanitizeFlags.SANITIZE_KEKULIZE”“Chem.SanitizeFlags.SANITIZE_SETAROMATICITY)
rdkit.Chem.rdmolops.SanitizeFlags.SANITIZE_NONE

>>> m2.GetSubstructMatches (Chem.MolFromSmarts ('c'))
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((3,), (4,), (5,), (6,), (7,), (8,))

It is, of course, also possible to write your own aromaticity perception function, but that is beyond the scope of this
document.

5.3 Manipulating Molecules

5.3.1 Cleaning up heterocycles

Mailing list discussions:
* http://www.mail-archive.com/rdkit-discuss @lists.sourceforge.net/msg01185.html
e http://www.mail-archive.com/rdkit-discuss @lists.sourceforge.net/msg01162.html
e http://www.mail-archive.com/rdkit-discuss @lists.sourceforge.net/msg01900.html
* http://www.mail-archive.com/rdkit-discuss @lists.sourceforge.net/msg01901.html

The code:

Examples of using it:

This produces:

5.3.2 Parallel conformation generation

Mailing list discussion: http://www.mail-archive.com/rdkit-discuss @lists.sourceforge.net/msg02648.html

The code:

"mrocontribution from Andrew Dalke """

import sys
from rdkit import Chem
from rdkit.Chem import AllChem

# Download this from http://pypi.python.org/pypi/futures
from concurrent import futures

# Download this from http://pypi.python.org/pypi/progressbar
import progressbar

## On my machine, it takes 39 seconds with 1 worker and 10 seconds with 4.
## 29.055u 0.102s 0:28.68 101.6% 0+0k 0+3io Opf+0w
#max_workers=1

## With 4 threads it takes 11 seconds.
## 34.933u 0.188s 0:10.89 322.4% 0+0k 125+1io Opf+0w
max_workers=4

# (The "u"ser time includes time spend in the children processes.
# The wall-clock time is 28.68 and 10.89 seconds, respectively.)

# This function is called in the subprocess.
# The parameters (molecule and number of conformers) are passed via a Python
def generateconformations(m, n):

m = Chem.AddHs (m)
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ids=All1Chem.EmbedMultipleConfs (m, numConfs=n)
for id in ids:
AllChem.UFFOptimizeMolecule (m, confId=id)
# EmbedMultipleConfs returns a Boost-wrapped type which
# cannot be pickled. Convert it to a Python 1list, which can.
return m, list (ids)

smi_input_file, sdf_output_file = sys.argv[l:3]

n = int(sys.argv[3])

writer = Chem.SDWriter (sdf_output_file)

suppl = Chem.SmilesMolSupplier (smi_input_file, titleLine=False)

with futures.ProcessPoolExecutor (max_workers=max_workers) as executor:
# Submit a set of asynchronous Jjobs

jobs = []
for mol in suppl:
if mol:
job = executor.submit (generateconformations, mol, n)
jobs.append (job)
widgets = ["Generating conformations; ", progressbar.Percentage(), " ",

progressbar.ETA(), " ", progressbar.Bar()]
pbar = progressbar.ProgressBar (widgets=widgets, maxval=len (jobs))
for job in pbar (futures.as_completed(jobs)) :
mol,ids=job.result ()
for id in ids:
writer.write (mol, confId=id)
writer.close ()

5.3.3 Neutralizing Charged Molecules

Mailing list discussion: http://www.mail-archive.com/rdkit-discuss @lists.sourceforge.net/msg02648.html

The code:

"mm o contribution from Hans de Winter """

from rdkit import Chem
from rdkit.Chem import AllChem

def TnitialiseNeutralisationReactions():
patts= (

# Imidazoles
("[n+;HIY, 'n"),
# Amines
(" [N+; 'HO]', 'N"),
# Carboxylic acids and alcohols
("[S(Io=-1) ;s ([O-1[#71)1"','0"),
# Thiols
("[S=;X1]','S"),
# Sulfonamides
("[S([N-;X2]S5(=0)=0)]",'N"),
# Enamines
("[$([N-;X2][C,N]=C)]"','N"),
# Tetrazoles
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('[n=-1","[nH]"),
# Sulfoxides
("[S([s=1=0)1","'s"),
# Amides
("[$([N=]C=0)]",'N"),
)
return [ (Chem.MolFromSmarts (x),Chem.MolFromSmiles (y,False)) for x,y in patts]

_reactions=None
def NeutraliseCharges (smiles, reactions=None) :
global _reactions
if reactions is None:
if reactions is None:
_reactions=_InitialiseNeutralisationReactions ()
reactions=_reactions
mol = Chem.MolFromSmiles (smiles)
replaced = False
for i, (reactant, product) in enumerate (reactions):
while mol.HasSubstructMatch (reactant) :
replaced = True
rms = AllChem.ReplaceSubstructs (mol, reactant, product)
mol = rms[0]
if replaced:
return (Chem.MolToSmiles (mol, True), True)
else:
return (smiles, False)

Examples of using it:

smis=("clcccc[nH+]1",
"C[N+] (C) (C)C","clcccccl [NH3+]",
"CC(=0) [0-]","clcccecel[O-]1",
"ccs",
"C[N-]S(=0) (=0)C",
"C[N-]C=C","C[N-]N=C",
"clccc[n-]11",
"CC[N-]C(=0)CcCc™)
for smi in smis:
(molSmiles, neutralised) = NeutraliseCharges (smi)
print smi,"->",molSmiles

This produces:

clcccec[nH+]1 —> clccncecl
C[N+] (C) (C)C —> CI[N+] (C) (C)C
clcccccecl [NH3+] —> Nclcccecl
CC(=0) [0-] —> CC(=0)0
clccccecl[O-] —> Oclccccecl
CCS —-> CCs

C[N-]1S(=0) (=0)C —> CNS(C) (=0)=
C[N-]C=C —-> C=CNC

C[N-]N=C -> C=NNC

clcce[n-]1 —> clcc[nH]cl
CC[N-]C(=0)CC —> CCNC (=0)CC

5.3. Manipulating Molecules
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5.4 3D functionality in the RDKit

The RDKit contains a range of 3D functionalities such as:

There are two alignment methods currently available in the RDKit. As an example we use two crystal structures from
the PDB of the same molecule.

The code:

from rdkit import Chem, RDConfig

from rdkit.Chem import AllChem, rdMolAlign

# The reference molecule

ref = Chem.MolFromSmiles (

— 'NC (=[NH2+])clccc (C[CR@QH] (NC (=0)CNS (=0) (=0) c2ccc3cccec3c2)C(=0)N2CCCCC2)cel")

# The PDB conformations

moll = Chem.MolFromPDBFile (RDConfig.RDBaseDir+'/rdkit/Chem/test_data/1DWD_ligand.pdb")
moll AllChem.AssignBondOrdersFromTemplate (ref, moll)

mol2 = Chem.MolFromPDBFile (RDConfig.RDBaseDir+'/rdkit/Chem/test_data/1PPC_ligand.pdb')
mol2 = AllChem.AssignBondOrdersFromTemplate (ref, mol2)

# Align them

rms = rdMolAlign.AlignMol (moll, mol2)

print rms

# Align them with OPEN3DAlign

pyO3A = rdMolAlign.GetO3A(moll, mol2)

score = pyO3A.Align()

print score

This produces:

1.55001955728
0.376459885045

If a molecule contains more than one conformer, they can be aligned with respect to the first conformer. If a list is
provided to the option RMSlist, the RMS value from the alignment are stored. The RMS value of two conformers of
a molecule can also be calculated separately, either with or without alignment (using the flag prealigned).

Examples of using it:

from rdkit import Chem

from rdkit.Chem import AllChem

mol = Chem.MolFromSmiles (

— 'NC (=[NH2+])clccc (C[CQ@QH] (NC (=0)CNS (=0) (=0) c2ccc3cccec3c2)C(=0)N2CCCCC2)cecl")
cids = AllChem.EmbedMultipleConfs (mol, numConfs=50, maxAttempts=1000,
—pruneRmsThresh=0.1)

print len(cids)

# align the conformers

rmslist = []

AllChem.AlignMolConformers (mol, RMSlist=rmslist)

print len(rmslist)

# calculate RMS of confomers 1 and 9 separately

rms = AllChem.GetConformerRMS (mol, 1, 9, prealigned=True)

This produces:

50
49

For shape comparison, the RDKit provides two Shape-based distances that can be calculated for two prealigned
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molecules or conformers. Shape protrude distance focusses on the volume mismatch, while Shape Tanimoto distance
takes the volume overlay overall into account.

Examples of using it:

from rdkit import Chem, RDConfig

from rdkit.Chem import AllChem, rdMolAlign, rdShapeHelpers

ref = Chem.MolFromSmiles (

— 'NC (=[NH2+])clccc (C[CR@QH] (NC (=0)CNS (=0) (=0) c2ccc3cccec3c?2)C(=0)N2CCCCC2)cel")

moll = Chem.MolFromPDBFile (RDConfig.RDBaseDir+'/rdkit/Chem/test_data/1DWD_ligand.pdb')
moll AllChem.AssignBondOrdersFromTemplate (ref, moll)

mol2 Chem.MolFromPDBFile (RDConfig.RDBaseDir+'/rdkit/Chem/test_data/l1PPC_ligand.pdb')
mol2 = AllChem.AssignBondOrdersFromTemplate (ref, mol2)

rms = rdMolAlign.AlignMol (moll, mol2)

tani = rdShapeHelpers.ShapeTanimotoDist (moll, mol2)

prtr = rdShapeHelpers.ShapeProtrudeDist (moll, mol2)

print rms, tani, prtr

This produces:

1.55001955728 0.18069102331 0.0962800875274

A 3D pharmacophore fingerprint can be calculated using the RDKit by feeding a 3D distance matrix to the 2D-
pharmacophore machinery.

Examples of using it:

from rdkit import Chem, DataStructs, RDConfig

from rdkit.Chem import AllChem

from rdkit.Chem.Pharm2D import Gobbi_Pharm2D, Generate

ref = Chem.MolFromSmiles (

— 'NC (=[NH2+])clccc (C[C@QH] (NC (=0)CNS (=0) (=0) c2ccc3cccec3c2)C(=0)N2CCCCC2)ccl")

moll = Chem.MolFromPDBFile (RDConfig.RDBaseDir+'/rdkit/Chem/test_data/1DWD_ligand.pdb')
moll AllChem.AssignBondOrdersFromTemplate (ref, moll)

mol2 Chem.MolFromPDBFile (RDConfig.RDBaseDir+'/rdkit/Chem/test_data/1PPC_ligand.pdb")
mol2 = AllChem.AssignBondOrdersFromTemplate (ref, mol2)

# pharmacophore fingerprint

factory = Gobbi_Pharm2D.factory

fpl = Generate.Gen2DFingerprint (moll, factory, dMat=Chem.Get3DDistanceMatrix (moll))
fp2 = Generate.Gen2DFingerprint (mol2, factory, dMat=Chem.Get3DDistanceMatrix (mol2))

# Tanimoto similarity

tani = DataStructs.TanimotoSimilarity (fpl, £fp2)

print tani

This produces:

0.451665312754

The RDKit provides an implementation of the torsion fingerprint deviation (TFD) approach developed by Schulz-
Gasch et al. (J. Chem. Inf. Model, 52, 1499, 2012). For a pair of conformations of a molecule, the torsional angles of
the rotatable bonds and the ring systems are recorded in a torsion fingerprint (TF), and the deviations between the TFs
calculated, normalized and summed up. For each torsion, a set of four atoms a-b-c-d are selected.

The RDKit implementation allows the user to customize the torsion fingerprints as described in the following.

* In the original approach, the torsions are weighted based on their distance to the center of the molecule. By
default, this weighting is performed, but can be turned off using the flag useWeights=False

* If symmetric atoms a and/or d exist, all possible torsional angles are calculated. To determine if two atoms are
symmetric, the hash codes from the Morgan algorithm at a given radius are used (default: radius = 2).
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¢ In the original approach, the maximal deviation used for normalization is 180.0 degrees for all torsions (default).
If maxDev="spec’, a torsion-type dependent maximal deviation is used for the normalization.

* In the original approach, single bonds adjacent to triple bonds and allenes are ignored (default). If ignoreColin-
earBonds="False’, a “combined” torsion is used

In addition there are a few differences to the implementation by Schulz-Gasch et al.:
* Hydrogens are never considered.

¢ In the original approach, atoms a and/or d are chosen randomly if atom b and/or ¢ have multiple non-symmetric
neighbors. The RDKit implementation picks the atom with the smallest Morgan invariant. This way the choice
is independent of the atom order in the molecule.

* In the case of symmetric atoms a and/or d, the RDKit implementation stores all possible torsional angles in the
TF instead of only storing the smallest one as in the original approach. Subsequently, all possible deviations
are determined and the smallest one used for the TFD calculation. This procedure guarantees that the smallest
deviations enter the TFD.

Examples of using it:

from rdkit import Chem, RDConfig

from rdkit.Chem import AllChem, TorsionFingerprints

ref = Chem.MolFromSmiles (

— 'NC (=[NH2+])clccc (C[C@QH] (NC (=0)CNS (=0) (=0) c2ccc3cccec3c2)C(=0)N2CCCCC2)cecl")

moll = Chem.MolFromPDBFile (RDConfig.RDBaseDir+'/rdkit/Chem/test_data/1DWD_ligand.pdb')
moll = AllChem.AssignBondOrdersFromTemplate (ref, moll)

mol2 = Chem.MolFromPDBFile (RDConfig.RDBaseDir+'/rdkit/Chem/test_data/lPPC_ligand.pdb")
mol2 = AllChem.AssignBondOrdersFromTemplate (ref, mol2)

tfdl = TorsionFingerprints.GetTFDBetweenMolecules (moll, mol2)

tfd2 = TorsionFingerprints.GetTFDBetweenMolecules (moll, mol2, useWeights=False)

tfd3 = TorsionFingerprints.GetTFDBetweenMolecules (moll, mol2, maxDev='spec')

print tfdl, tfd2, t£fd3

This produces:

0.0691236990428 0.111475253992 0.0716255058804

If the TFD between conformers of the same molecule is to be calculated, the function GetTFDBetweenConformers()
should be used for performance reasons.

Examples of using it:

from rdkit import Chem, RDConfig

from rdkit.Chem import AllChem, TorsionFingerprints

ref = Chem.MolFromSmiles (

—'NC (=[NH2+])clccc (C[C@@QH] (NC (=0)CNS (=0) (=0) c2ccc3cccec3c2)C(=0)N2CCCCC2)ccl")

moll = Chem.MolFromPDBFile (RDConfig.RDBaseDir+'/rdkit/Chem/test_data/1DWD_ligand.pdb')
moll = AllChem.AssignBondOrdersFromTemplate (ref, moll)

mol2 = Chem.MolFromPDBFile (RDConfig.RDBaseDir+'/rdkit/Chem/test_data/l1PPC_ligand.pdb")
moll.AddConformer (mol2.GetConformer (), assignId=True)

tfd = TorsionFingerprints.GetTFDBetweenConformers (moll, confIdsl=[0], confIds2=[1])
print tfd

This produces:

[0.0691...]

For the conformer RMS and TFD values, the RDKit provides convenience functions that calculated directly the sym-
metric matrix which can be fed into a clustering algorithm such as Butina clustering. The flag reordering ensures that
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the number of neighbors of the unclustered molecules is updated every time a cluster is created.

Examples of using it:

from rdkit import Chem
from rdkit.Chem import AllChem, TorsionFingerprints

from rdkit.ML.Cluster import Butina

mol = Chem.MolFromSmiles (

— 'NC (=[NH2+])clccc (C[CRQH] (NC (=0)CNS (=0) (=0) c2ccc3cccec3c2)C(=0)N2CCCCC2)cel")
cids = AllChem.EmbedMultipleConfs (mol, numConfs=50, maxAttempts=1000,
—pruneRmsThresh=0.1)

# RMS matrix

rmsmat = AllChem.GetConformerRMSMatrix (mol, prealigned=False)

# TFD matrix

tfdmat = TorsionFingerprints.GetTFDMatrix (mol)

# clustering

num = mol.GetNumConformers ()

rms_clusters = Butina.ClusterData (rmsmat, num, 2.
tfd_clusters = Butina.ClusterData (tfdmat, num, O.

0, isDistData=True, reordering=True)
3, 1sDistData=True, reordering=True)

5.5 Using scikit-learn with RDKit

scikit-learn is a machine-learning library for Python containing a variety of supervised and unsupervised methods.
The documention can be found here: http://scikit-learn.org/stable/user_guide.html

RDKit fingerprints can be used to train machine-learning models from scikit-learn. Here is an example for random
forest:

The code:

from rdkit import Chem, DataStructs

from rdkit.Chem import AllChem

from sklearn.ensemble import RandomForestClassifier
import numpy

# generate four molecules

ml = Chem.MolFromSmiles ('clcccccl')
m2 = Chem.MolFromSmiles ('clccccclCC'")
m3 = Chem.MolFromSmiles ('clccnccl')
m4 = Chem.MolFromSmiles ('clccncclCC'")
mols = [ml, m2, m3, m4]

# generate fingeprints: Morgan fingerprint with radius 2
fps = [AllChem.GetMorganFingerprintAsBitVect (m, 2) for m in mols]

# convert the RDKit explicit vectors into numpy arrays

np_fps = []
for fp in fps:
arr = numpy.zeros((1l,))

DataStructs.ConvertToNumpyArray (fp, arr)
np_fps.append(arr)

# get a random forest classifiert with 100 trees
rf = RandomForestClassifier (n_estimators=100, random_state=1123)

# train the random forest
# with the first two molecules being actives (class 1) and
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# the last two being inactives (class 0)
yS_fit = [1, 1, OI 0]
rf.fit (np_fps, ys_£fit)

# use the random forest to predict a new molecule

m5 = Chem.MolFromSmiles ('clccccclO!')

fp = numpy.zeros((1l,))

DataStructs.ConvertToNumpyArray (AllChem.GetMorganFingerprintAsBitVect (m5, 2), f£fp)

print rf.predict (fp)
print rf.predict_proba (fp)

The output with scikit-learn version 0.13 is:
(11
[[ 0.14 0.86]]

Generating a similarity map for this model.

The code:

from rdkit.Chem.Draw import SimilarityMaps

# helper function
def getProba (fp, predictionFunction):
return predictionFunction (fp) [0][1]

m5 = Chem.MolFromSmiles ('clccccclO!')
fig, maxweight = SimilarityMaps.GetSimilarityMapForModel (m5, SimilarityMaps.
—GetMorganFingerprint, lambda x: getProba (x, rf.predict_proba))

This produces:
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OH

5.6 Using custom MCS atom types

Mailing list discussion: http://www.mail-archive.com/rdkit-discuss @lists.sourceforge.net/msg03676.html

IPython notebook:  http:/nbviewer.ipython.org/gist/greglandrum/8351725  https://gist.github.com/greglandrum/
8351725

The goal is to be able to use custom atom types in the MCS code, yet still be able to get a readable SMILES for the
MCS. We will use the MCS code’s option to use isotope information in the matching and then set bogus isotope values
that contain our isotope information.

The code:
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from rdkit import Chem
from rdkit.Chem import rdFMCS

# our test molecules:

smis=["COclccc (C(Nc2nc3c (ncn3COCC=0)c (=0) [nH]2) (c2ccccc2)c2eccece?)cel”,
"COclccc (C(Nc2nc3c (necn3COC (CO) (CO)CO)c (=0) [nH]2) (c2cccecec?) c2ecece2)cel"]

ms = [Chem.MolFromSmiles (x) for x in smis]

def label (a):
" a simple hash combining atom number and hybridization
return 100+int (a.GetHybridization()) +a.GetAtomicNum ()

# copy the molecules, since we will be changing them
nms = [Chem.Mol (x) for x in ms]
for nm in nms:
for at in nm.GetAtoms () :
at.SetIsotope (label (at))

mcs=rdFMCS.FindMCS (nms, atomCompare=rdFMCS.AtomCompare.Comparelsotopes)
print mcs.smartsString

This generates the following output:

[406%]—-[308x]—-[306%x]1:[306x]:[306%]:[306%] (:[306%]:[306%]1:1)—-[406%] (—-[307+x]—-[306*]1:
—[307%]:[306%]2:[306*] (:[306x] (:[307%]1:1)=[308%]):[307%]:[306%]:[307x]:2-[406%]—
—[408%]—-[406%]) (—[306*]1:[306%x]:[306%]:[306%]:[306*]:[306x]:1)-[306x]1:[306%]:[306%*]:
—[306%]:[306%]:[306x]:1

That’s what we asked for, but it’s not exactly readable. We can get to a more readable form in a two step process:
1. Do a substructure match of the MCS onto a copied molecule
2. Generate SMILES for the original molecule, using only the atoms that matched in the copy.

This works because we know that the atom indices in the copies and the original molecules are the same.

def getMCSSmiles (mol,labelledMol,mcs) :
mcsp = Chem.MolFromSmarts (mcs.smartsString)
match = labelledMol.GetSubstructMatch (mcsp)
return Chem.MolFragmentToSmiles (ms[0],atomsToUse=match,
isomericSmiles=True,
canonical=False)

print getMCSSmiles (ms[0],nms[0],mcs)

COclccc (C(Nc2nc3c (necn3COC) ¢ (=0) [nH]2) (c2cccecc?) c2eccece2) cel

That’s what we were looking for.

5.7 Clustering molecules

For large sets of molecules (more than 1000-2000), it’s most efficient to use the Butina clustering algorithm.

Here’s some code for doing that for a set of fingerprints:

def ClusterFps (fps,cutoff=0.2):
from rdkit import DataStructs
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from rdkit.ML.Cluster import Butina

# first generate the distance matrix:

dists = []

nfps = len(fps)

for i in range(l,nfps):
sims = DataStructs.BulkTanimotoSimilarity (fps[i], fps[:1i])
dists.extend([1-x for x in sims])

# now cluster the data:
cs = Butina.ClusterData(dists,nfps,cutoff,isDistData=True)
return cs

The return value is a tuple of clusters, where each cluster is a tuple of ids.

Example usage:

from rdkit import Chem

from rdkit.Chem import AllChem

import gzip

ms = [x for x in Chem.ForwardSDMolSupplier (gzip.open('zdd.sdf.gz')) if x is not None]
fps = [AllChem.GetMorganFingerprintAsBitVect (x,2,1024) for x in ms]

clusters=ClusterFps (fps,cutoff=0.4)

The variable clusters contains the results:

>>> print clusters[200]
(6164, 1400, 1403, 1537, 1543, 6575, 6759)

That cluster contains 7 points, the centroid is point 6164.

5.8 RMSD Calculation between N molecules

5.8.1 Introduction

We sometimes need to calculate RMSD distances between two (or more) molecules. This can be used to calculate how
close two conformers are. Most RMSD calculations make sense only on similar compounds or, at least, for common
parts in different compounds.

5.8.2 Details

The following program (written in python 2.7) takes an SDF file as an input and generates all the RMSD distances
between the molecules in that file. These distances are written to an output file (user defined).

So for an SDF with 5 conformers we will get 10 RMSD scores - typical n choose k problem, without repetition i.e. 5!
/21(5-2)!

The code:

#!/usr/bin/python

rro

calculates RMSD differences between all structures in a file

@author: JP <jp@javaclass.co.uk>

rro
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import os
import getopt
import sys

# rdkit imports
from rdkit import Chem
from rdkit.Chem import AllChem

rro

Write contents of a string to file

Py

def write_contents (filename, contents):
# do some basic checking, could use assert strictly speaking
assert filename is not None, "filename cannot be None"
assert contents is not None, "contents cannot be None"
f = open(filename, "w")
f.write (contents)
f.close() # close the file

rro

Write a list to a file

rri

def write_list_to_file(filename, list, line_sep = os.linesep):
# do some basic checking, could use assert strictly speaking
assert list is not None and len(list) > 0, "list cannot be None or empty"
write_contents (filename, line_sep.join(list))

rro

Calculate RMSD spread

rro

def calculate_spread(molecules_file):
assert os.path.isfile(molecules_file), "File $s does not exist!" % molecules

# get an iterator
mols = Chem.SDMolSupplier (molecules_file)

spread_values = []

# how many molecules do we have in our file

mol_count = len (mols)

# we are going to compare each molecule with every other molecule
# typical n choose k scenario (n choose 2)

# where number of combinations is given by (n!) / k!(n-k)! ; if my maths isn't too,

—rusty
for i in range (mol_count - 1):
for j in range(i+l, mol_count):
# show something is being done ... because for large mol_count this will_,
—~take some time
print "Aligning molecule #%d with molecule #%d (%d molecules in all)" % (i,

—7j, mol_count)
# calculate RMSD and store in an array
# unlike AlignMol this takes care of symmetry
spread_values.append (str (AllChem.GetBestRMS (mols[i], mols[]j])))
# return that array
return spread_values

def main () :
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try:
# the options are as follows:
# f - the actual structure file
opts, args = getopt.getopt(sys.argv[l:], "vi:o:")
except getopt.GetoptError, err:
# print help information and exit:
print str(err) # will print something like "option —-a not recognized"
sys.exit (401)

# DEFAULTS
molecules_file = None
output_file = None

for opt, arg in opts:
if opt == "-v":
print "RMSD Spread 1.1"
sys.exit ()

elif opt == "-£f":
molecules_file = arg
elif opt == "-0o":
output_file = arg
else:
assert False, "Unhandled option: " + opt
# assert the following - not the cleanest way to do this but this will work

assert molecules_file is not None, "file containing molecules must be specified,
—add —-f to command line arguments"

assert output_file is not None, "output file must be specified, add -o to command,,
—~line arguments"

# get the RMSD spread values

spread_values = calculate_spread(molecules_file)

# write them to file

write_list_to_file(output_file, spread_values)

if name == "__main__ ":
main ()

This program may be executed at the command line in the following manner (provided you have your python inter-
preter at /usr/bin/python, otherwise edit the first line; the funnily named shebang):

calculate_spread.py —-f my_conformers.sdf -o my_conformers.rmsd_spread.txt

TL;DR : The line A11Chem.GetBestRMS (moll,mol2) returns the RMSD as a float and is the gist of this
program. GetBestRMS () takes care of symmetry unlike A11ignMol ()

5.9 License

This document is copyright (C) 2012-2015 by Greg Landrum

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 543 Howard Street, Sth
Floor, San Francisco, California, 94105, USA.

The intent of this license is similar to that of the RDK:it itself. In simple words: “Do whatever you want with it, but
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please give us some credit.”
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CHAPTER
SIX

THE RDKIT DATABASE CARTRIDGE

6.1 What is this?

This document is a tutorial and reference guide for the RDKit PostgreSQL cartridge.

If you find mistakes, or have suggestions for improvements, please either fix them yourselves in the source document
(the .md file) or send them to the mailing list: rdkit-discuss @lists.sourceforge.net (you will need to subscribe first)

6.2 Tutorial

6.2.1 Introduction
6.2.2 Creating databases

Configuration

The timing information below was collected on a commodity desktop PC (Dell Studio XPS with a 2.9GHz i7 CPU
and 8GB of RAM) running Ubuntu 12.04 and using PostgreSQL v9.1.4. The database was installed with default
parameters.

To improve performance while loading the database and building the index, I changed a couple of postgres configura-
tion settings in postgresql.conf :

fsync = off # turns forced synchronization on or off
synchronous_commit = off # immediate fsync at commit
full page_writes = off # recover from partial page writes

And to improve search performance, I allowed postgresql to use more memory than the extremely conservative default
settings:

shared_buffers = 2048MB # min 128kB
# (change requires restart)
work_mem = 128MB # min 64kB

Creating a database from a file

In this example I show how to load a database from the SMILES file of commercially available compounds that is
downloadable from emolecules.com at URL http://www.emolecules.com/doc/plus/download-database.php
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If you choose to repeat this exact example yourself, please note that it takes several hours to load the 6 million row
database and generate all fingerprints.

First create the database and install the cartridge:

~/RDKit_trunk/Data/emolecules > createdb emolecules
~/RDKit_trunk/Data/emolecules > psgl -c 'create extension rdkit' emolecules

Now create and populate a table holding the raw data:

~/RDKit_trunk/Data/emolecules > psgl -c 'create table raw_data (id SERIAL, smiles_,
—text, emol_id integer, parent_id integer)' emolecules

NOTICE: CREATE TABLE will create implicit sequence "raw_data_id seq" for serial
—column "raw_data.id"

CREATE TABLE

~/RDKit_trunk/Data/emolecules > zcat emolecules-2013-02-01.smi.gz | sed '1d; s/\\/
<\\\\/g' | psgl -c "copy raw_data (smiles,emol_id,parent_id) from stdin with_
—delimiter ' '" emolecules

Create the molecule table, but only for SMILES that the RDKit accepts:

~/RDKit_trunk/Data/emolecules > psgl emolecules
psqgl (9.1.4)
Type "help" for help.
emolecules=# select % into mols from (select id,mol_from smiles(smiles::cstring) m_,
—from raw_data) tmp where m is not null;
WARNING: could not create molecule from SMILES 'CN(C)C(=[N+] (C)C)CL.F [P~
] (F) (F) (F) (F)F'
a lot of warnings deleted
SELECT 6008732
emolecules=# create index molidx on mols using gist (m);
CREATE INDEX

The last step is only required if you plan to do substructure searches.

Loading ChEMBL

Start by downloading and installing the postgresql dump from the ChEMBL website ftp://ftp.ebi.ac.uk/pub/databases/
chembl/ChEMBLdb/latest

Connect to the database, install the cartridge, and create the schema that we’ll use:

chembl_14=# create extension i1f not exists rdkit;
chembl_14=# create schema rdk;

Create the molecules and build the substructure search index:

chembl_14=# select * into rdk.mols from (select molregno,mol_from ctab (molfile::
—cstring) m from compound_structures) tmp where m is not null;

SELECT 1210823

chembl_14=# create index molidx on rdk.mols using gist (m);

CREATE INDEX

chembl_14=# alter table rdk.mols add primary key (molregno);

NOTICE: ALTER TABLE / ADD PRIMARY KEY will create implicit index "mols_pkey" for
—table "mols"

ALTER TABLE

Create some fingerprints and build the similarity search index:
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chembl_14=# select molregno,torsionbv_fp(m) as torsionbv,morganbv_fp (m) as_,
—mfp2, featmorganbv_fp (m) as ffp2 into rdk.fps from rdk.mols;

SELECT 1210823

chembl_14=# create index fps_ttbv_idx on rdk.fps using gist (torsionbv);
CREATE INDEX

chembl_14=# create index fps_mfp2 idx on rdk.fps using gist (mfp2);

CREATE INDEX

chembl_14=# create index fps_ffp2 idx on rdk.fps using gist (ffp2);

CREATE INDEX

chembl_14=# alter table rdk.fps add primary key (molregno);

NOTICE: ALTER TABLE / ADD PRIMARY KEY will create implicit index "fps_pkey" for
—table "fps"

ALTER TABLE

6.2.3 Substructure searches

Example query molecules taken from the eMolecules home page:

chembl_14=# select count (#) from rdk.mols where m@>'clccccZ2clnncc2’' ;
count

Time: 184.043 ms
chembl_14=# select count (*) from rdk.mols where m@>'clccncZclnccn2’' ;
count

Time: 449.998 ms
chembl_14=# select count (#*) from rdk.mols where m@>'clcnccZ2nlccn2' ;
count

Time: 568.378 ms
chembl_14=# select count (*) from rdk.mols where m@>'Nclncnc (N)nl' ;
count

Time: 721.758 ms
chembl_14=# select count (#*) from rdk.mols where m@>'clscnnl' ;
count

Time: 701.036 ms
chembl_14=# select count (#*) from rdk.mols where m@>'clcccc2clncs2' ;
count

6.2. Tutorial
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12823
(1 row)

Time: 1585.473 ms
chembl_14=# select count (x) from rdk.mols where m@>'clcccc2cICNCCN2' ;
count

Time: 4567.222 ms

Notice that the last two queries are starting to take a while to execute and count all the results.

Given we’re searching through 1.2 million compounds these search times aren’t incredibly slow, but it would be nice
to have them quicker.

One easy way to speed things up, particularly for queries that return a large number of results, is to only retrieve a
limited number of results:

chembl_14=# select x from rdk.mols where m@>'clcccc2clICNCCN2' 1imit 100;

molregno | -
o m
,,,,,,,,,, o
e
S

1292129 | Cclccc2c(cl)C(=0)N(N(C)C)CC(=0)N2

1013311 | CCCCC(=0)N1CC (=0)Nc2ccc (F)cc2Clclcecececl

1294754 | COclcc2c(cclOCcleccececcl)NC (=0) [CE@H]1CCCN1IC2=0

1012025 | O=C(clcc2cceccc20ocl=0)NI1CC (=0)Nc2ccc (Br)cc2Clclcece (F)cel

995226 | CClCchccchNlC(*O)CNchcccchC(*O) (C)CCl*O
1291875 | COC(=0)C1l=NN2c3ccccc3CN([CE@H] (C)c3cceceel3)C (= [CEQ@RH] 2 [C@H] 1clccccecel

1116370 | COclccc (CC(=0)N2CC (=0)Nc3ccc (Br)cc3C2c2ccc (F)cc2)ccloc

1114872 |,
«—0=C1l[C@Q@H]2[C@H] (C(=0)N1Cclcccccl) [CERH] 1C (=0)Nc3ccceec3C (=0)N1[CE@H]2clccccecl
Time: 375.747 ms

SMARTS-based queries

Oxadiazole or thiadiazole:

chembl_14=# select #* from rdk.mols where m@>'cl[o,s]ncnl'::gmol limit 500;

molregno | m

7777777777 +777777777777777777777777777777777777777777777777777777777777777777777777777
534296 ClclccccclCNelnoc (—c2sccc2Br)nl

\
1178 | CCCCcloc2ccccc2clCclccecc(/C(C)=C/Cn20oc (=0) [nH]c2=0)cl
566382 | COC(=0)CCclnc (C2CC(c3ccc (0)c (F)c3)=N02)nol
\
\

499261 CS/C=C(/C)nlc (=0)onclC(=0)clccc (Br)ccl
450499 CS (=0) (=0) clccc (Nc2nence (N3CCC (cdnc (—
—cbccec (C(F) (F)F)c5)nod4)CC3)c2[N+] (=0) [O0-])ccl
600176 | Cclnc(-c2c(Cl)cc(Cl)cc2-c2cnc([CRE@H] (C)NC(=0)N(C)O)c(F)c2)nol
1213 | CC/C(:C\Cnloc(:O)[nH]cl:O)clcccc(OCc2nc( c3ccc (C(F) (F)F)cc3)oc2C)cl
659277 | Cnlc( ) ¢ (CCCN) c[n+]1CC1=C(C(=0)0)N2C (=0) [CE@H] (NC (=0) /
=N\OC (C) (C)C(=0)0)c3nsc (N)n3) [CQRH] 2SC1

1316 | CCCCCCCC/C =C\Cnloc (=0) [nH]cl=0)clcccc (OCc2nc (—c3ccc (C(F) (F)F)cc3)oc2C)cl
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1206 | C/C(Cnloc(=0) [nH]cl=0)=C(/C)clcccc (0Cc2nc (-c3ccc(C(F) (F)F)cc3)oc2C)cl
1496 | Ccloc (—c2cccecec2)nclCOclcececcc (C#CC(C)nZ2oc (=0) [nH]c2=0) c1
Time: 3365.309 ms

This is slower than the pure SMILES query, this is generally true of SMARTS-based queries.

Using Stereochemistry

Note that by default stereochemistry is not taken into account when doing substructure queries:

chembl_14=# select x from rdk.mols where m@>'NC (=0) [CARRH]ICCCNIC=0' 1imit 10;
molregno | u

1295889 |_,
—COclccc (C[CEE@H] (C(=0)NCC(N)=0)N(C)C(=0) [CE@H] 2CCCN2C (=0) [CRH] (CC(C)C)NC (=0)C(C)NC (=0) pCc2ccccc?2)cc
1293815 | CNI1C(=0)C23CC4=CC=CC (0)C4N2C (=0)C1(CO)sSs3
1293919 |_,
—CNC (=0) CNC (=0) C (NC (=0) CNC (=0) CICCCN1C (=0) C(C)NC (=0) C(NC (=0)OC (C) (C)C)C(C)C)c(c)c
1011887 | COC(=0)C(C)NC(=0)CICCCNIC (=0)CNC(=0)0Cclcccccl

1293021 |
<,CCC (C) CINC (=0) C (NC (=0) C (CC (C) C) N (C) C (=0) [CERH] 2CC (0) CN2C (=0) [CRH] (C) 0) C (C) OC (=0) [CRH] [Cc2ccc (OC) cc
1287353 |

—CCC (C)CINC (=0)C(NC(=0)C(CC(C)C)N(C)C(=0)C2CCCN2C(=0)C(C)O)C(C)0OC(=0)C(Cc2ccc(0C)cc2)N|C)C(=0)cacca
1293647 |,
—CCC(C) [CE@H] 1INC (=0) [CE@H]2CCCN2C (=0)C(CC(0O)CC1)O0C (=0)CCNC (=0) [C@H] (C)N(C)C(=0) [CRH] (C(C)C)N(C)C1l=0
1290320 |,
—C=CCOC (=0) [CE@H]1C[CE@H] (OC(C) (C)C)CN1IC(=0) [CE@H]1[CRH]20C(C) (C)O[CRH]2CN1C (=0)0CClc2¢cccec2—
—c2ccccc2l
1281392 |,
«COC1=CC2C(=0)N(C) [CE@H] (C)C(=0O)N3NCCC[CE@Q@H]3C(=0)N3[CE@H] (C[C@E]4(0O)cbccc(Cl)cc5bN[CEQH]34)C(=0O)N|[C
1014237 | CC(C)COC(=0)N1CC(0)CC1LC(=0)Nclccc2c(cl)Oocoz
(10 rows)

Time: 9.447 ms

This can be changed using the rdkit.do_chiral_sss configuration variable:

chembl_14=# set rdkit.do_chiral_sss=true;

SET

Time: 0.241 ms

chembl_14=# select x from rdk.mols where m@>'NC (=0) [CR@QH]ICCCNIC=0' 1imit 10;

molregno | o

1295889
—COTtrretCiCRET(C(=0) NCCAN) =0 N CH(=0) fCREHT ZCCCN2CH(=O) TCRET(CCHAE)I T NC(=0)CH(CINC(=0)OCc2ccccc2) cc
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1293021
—CCC (C)CINC(=0)C (NC(=0)C(CC(C)C)N(C)C(=0) [CERH]2CC (0)CN2C (=0) [C@QH] (C)0O)C(C)0OC (=0) [CRH] (Cc2ccc (0C) cc.

1293647 |
—CCC (C) [CE@H]INC (=0) [CER@H] 2CCCN2C (=0)C (CC(0)CC1)0OC (=0)CCNC(=0) [CRH] (C)N(C)C (=0) [CRH] (C(C)C)N(C)C1l=0
1290320 |_,
—C=CCOC (=0) [CE@RH] 1C[CE@H] (OC(C) (C)C)CN1C (=0) [CE@H]1[CRH]20C(C) (C)O[CRH]2CN1C (=0)0CClc2¢cccc2—
—c2ccccc2l

1281392 |
—COC1=CC2C (=0)N(C) [CC@H] (C)C (=0)N3NCCC[CE@H]3C (=O)N3[CERH] (C[CRE]4(0O)c5ccc(Cl)ccbN[Cr@H]34)C(=0)N[C

1007418 | C/C=C\C=C\C (=0)N1CC2 (CC (c3cccc (NC(=0)/C=C\C=C/C)c3)=N02)C[CRH]IC(N)=0
785530 | C/C=C/C(=0)N1CC2 (CC(c3cccc (NC(=0)CC)c3)=N02)C[CRH]1C(N)=0

1292152 |
—CCCCCCCC (=0O)N[C@H] (C(=0)N[C@H] (C(=0)N(C) [CQRH] (C(=0)NICCC[C@H]IC(=0O)N(C) [CQH] (C)C (=0)NCclccc (0C) cclf

1281390 |_
—CC(C) [CERH] 1NC (=0) [CERH]2C[CER]3 (0) cdcce (CLl) cc4N[CRH] 3N2C (=0) [CRH] 2CCCNN2C (=0) [CERH] (¢) N (C) C (=0) [C

1057962 | _,
—CC[C@H] (C) [CR@H] INC (=0) [CRH] (CCCNC (=N)N) NC (=0) [C@H] (CC (=0) O) NC (=0) [CRH] (CCSC)NC (=0) [C@{H] (CCCCN) NC (

(10 rows)

Time: 35.383 ms

6.2.4 Similarity searches

Basic similarity searching:

chembl_14=# select count (%) from rdk.fps where mfp2%morganbv_fp ('Cclccc2nc (-
—c3ccc (NC (C4N (C (c5ccesb)=0)CcCC4)=0)cc3)sca2cl’);
count

66
(1 row)

Time: 826.886 ms

Usually we’d like to find a sorted listed of neighbors along with the accompanying SMILES. This SQL function makes
that pattern easy:

chembl_14=# create or replace function get_mfp2_neighbors(smiles text)
returns table (molregno integer, m mol, similarity double precision) as
$S
select molregno,m,tanimoto_sml (morganbv_fp (mol_from smiles($1::cstring)),mfp2) as_,
—similarity
from rdk.fps join rdk.mols using (molregno)
where morganbv_fp (mol_from_smiles ($1::cstring)) Smfp2
order by morganbv_fp (mol_from_smiles ($1l::cstring))<%$>mfp2;
$$ language sgl stable ;
CREATE FUNCTION
Time: 0.856 ms
chembl_14=#
chembl_14=# select » from get_mfp2_neighbors ('Cclccc2nc (-
—c3ccc (NC(C4AN(C (cbececesh)=0)CCC4)=0)cc3)sc2cl') limit 10;

molregno
—similarity
__________ +_____________________________________________________________+_____________
472512 | Cclccc2nc (—c3ccce (NC(=0)C4CCN (C (=0)c5cecesb)CC4)ce3)sc2el | 0.
—772727272727273
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471317 | Cclccc2nce (—c3ccce (NC (=0)C4CCCN (S (=0) (=0)c5ceesb)C4)ce3)sc2el | 0.
—657534246575342

471461 | Cclccc2nc (—c3ccc (NC(=0)C4CCN (S (=0) (=0)c5cecesb)CC4)ce3)sc2ecl | 0.
—647887323943662

471319 | Cclccec2nc (—c3ccc (NC (=0)C4CCN (S (=0) (=0)c5cecesb)C4)ce3)sc2cel | 0.
-,638888888888889
1032469 | 0O=C(Nclnc2ccc(Cl)cc2sl) [CA@H]1CCCNIC (=0)clcccsl | 0.
—623188405797101
751668 | COclccc2nc (NC (=0) [CA@H] 3CCCN3C (=0) c3cces3) sc2cecl | 0.
—619718309859155
471318 | Cclccec2nc (—c3ccce (NC(=0)C4CN (S (=0) (=0)cbecces5)C4)ce3)sc2el | 0.
—~611111111111111
740754 | Cclccc (NC(=0)C2CCCN2C (=0)c2ccecs?2)cclC | 0.
—606060606060606
732905 | O=C (Nclccc (S (=0) (=0)N2CCCC2)ccl)CICCCNIC (=0)clccesl | 0.
—602941176470588
1087495 Cclccc (NC (=0) C2CCCN2C (=0) c2ceces2)c(C)cl | 0.
—597014925373134
(10 rows)

Time: 5453.200 ms
chembl_14=4# select % from get_mfp2_neighbors('Cclccc2nc (N(C)CC(=0)0)sc2cl') limit 10;

molregno | m | similarity

,,,,,,,,,, T
412312 | Cclccec2nc (N(C)CCN(C)c3ncdcecc (C)cecds3)sc2el | 0.692307692307692
470082 | CN(CC(=0)0)clnc2cc ([N+] (=0) [0-])ccc2sl | 0.583333333333333
1040255 | CC(=0)N(CCCN(C)C)clnc2ccc(C)cc2sl | 0.571428571428571
773946 | Cl.CC(=0)N(CCCN(C)C)clnc2ccc(C)cc2sl | 0.549019607843137
1044892 | Cclccec2nc (N(CCN(C)C)C(=0)c3cc(Cl)sc3Cl)sc2cl | 0.518518518518518
1040496 | Cclccc2nc (N(CCCN(C)C)C(=0)CCc3ccecece3) sc2cel | 0.517857142857143
1049393 | Cclccec2nc (N(CCCN(C)C)C(=0)CS (=0) (=0)c3ccecece3)sc2el | 0.517857142857143
441378 | Cclccc2nce (NC (=0)CCC (=0)0) sc2cl | 0.510204081632653
1042958 | Cclccc2nc (N(CCN(C)C)C (=0)c3cccdccceccdc3)sc2cel | 0.509090909090909
1047691 | Cclccc (S (=0) (=0)CC(=0)N(CCCN(C)C)c2nc3ccc(C)ce33s2)cecl | 0.509090909090909

(10 rows)

Time: 1797.656 ms

Adjusting the similarity cutoff

By default, the minimum similarity returned with a similarity search is 0.5. This can be adjusted with the rd-
kit.tanimoto_threshold (and rdkit.dice_threshold) configuration variables:

chembl_14=# select count (x) from get_mfp2 neighbors ('Cclccc2nc (N(C)CC(=0)0)sc2cl');
count
18
(1 row)

Time: 1199.751 ms

chembl_14=# set rdkit.tanimoto_ threshold=0.7;

SET

Time: 0.191 ms

chembl_14=# select count (*) from get_mfp2_neighbors ('CclcccZnc (N(C)CC(=0)0)sc2cl');
count
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0
(1 row)

Time: 826.058 ms

chembl_14=# set rdkit.tanimoto_threshold=0.6;

SET

Time: 0.220 ms

chembl_14=# select count (*) from get_mfp2_ neighbors ('CclcccZnc (N(C)CC(=0)0)sc2cl');
count

Time: 1092.303 ms

chembl_14=# set rdkit.tanimoto_threshold=0.5

chembl_14-# ;

SET

Time: 0.257 ms

chembl_14=# select count (#) from get_mfp2_ neighbors ('CclcccZnc (N(C)CC(=0)0)sc2cl');
count

18
(1 row)

Time: 1081.721 ms

6.2.5 Using the MCS code

The most straightforward use of the MCS code is to find the maximum common substructure of a group of molecules:

chembl_ 20=# select fmcs(m::text) from rdk.mols join compound _records using (molregno)_,
—where doc_1id=3; -

(#6]1(=[#7] (—[#6] (—[#6]2: [#6]: [#6] : [#6] (: [#6] : [#6]:2)—[#7]—[#6] (=[#6]2: [#6] (=[#6]3:[
—#6]: [#6]:[#6]:[#6]:[#6]:3) : [#6]:[#6]:[#6]:[#6]:2)=[#8])=[#8])—[#6]—[#6]—-[#6]):[#6]:[
—#16]: [#6]:[#6]:1

(1 row)

chembl_20=# select fmcs(m::text) from rdk.mols join compound_records using (molregno),,
—where doc_1id=4;

[#6] (- [#6]—, : [#6]—, : [#6]—, : [#6]—, : [#6])—[#7]—[#6]—[#6] (=, : [#6])—, : [#6]
(1 row)

The same thing can be done with a SMILES column:

chembl_20=# select fmcs(canonical smiles) from compound_structures join compound_
—records using (molregno) where doc_id=4;
fmcs

(#6] (= [#7]—[#6]—[#6]—, : [#6]—, : [#6]—, : [#6]~, : [#6]) —[#6] (=, : [#6]) =, : [#6]

(1 row)
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It’s also possible to adjust some of the parameters to the FMCS algorithm, though this is somewhat more painful as of
this writing (the 2015_03_1 release). Here are a couple of examples:

chembl_20=# select fmcs_smiles(str, '{"Threshold":0.8}"') from

chembl_20-# (select string_agg(m::text,' ') as str from rdk.mols

chembl_20 (# join compound_records using (molregno) where doc_id=4) as str ;
fmcs_smiles

[(#6]—[#6]—[#8]—[#6] (—[#6] (=[#8])—[#7]—-[#6] (—[#6]) —[#6] (=, : [#6])—, : [#6])—[#6] (—[#8])—[
—#6] (= [#8])—[#6] (—[#8]—[#6]—[#6]) —[#6]—[#7]—[#6] (—[#6])—[#6] (-, : [#6])—, : [#6]
(1 row)

chembl_20=# select fmcs_smiles (str, '{"AtomCompare":"Any"}"') from
chembl_20-# (select string_agg(m::text,' ') as str from rdk.mols
chembl_20(# join compound_records using (molregno) where doc_id=4) as str ;

—smiles

[#6]—, : [#6, #7]—[#8, #6]—[#6, #7] (—[#6, #8]—[#7, #6]—, : [#6, #7]—, : [#6, #7]—, : [#7,#6]—, : [
—#6])—[#6, #7]—[#6]—[#6] (—[#8, #6]—[#6])—[#6, #7]—[#7, #6]—-[#6]—, : [#6, #8]—, : [#7,#6]—, : [
—#6]

(1 row)

Note The combination of "AtomCompare": "Any" and a value of "Threshold" thatis less than 1.0 does a quite
generic search and can results in very long search times. Using "Timeout" with this combination is recommended:

chembl_20=# select fmcs_smiles(str,'{"AtomCompare":"Any", "CompleteRingsOnly":true,
—"Threshold":0.8, "Timeout":60}"') from

chembl_20-# (select string_agg(m::text,' ') as str from rdk.mols

chembl_20 (# join compound_records using (molregno) where doc_id=3) as str ;
WARNING: findMCS timed out, result is not maximal

. fmcs_smiles

(#8]=[#6] (- [#7]—[#6]1:[#6]:[#6]:[#6] (: [#6]:[#6]:1)—[#6] (=[#8])—[#7]1-[#6]—-[#6]—[#6]—[
#6, #T7]—[#6]2: [#6]—1:[#6]:[#6]:[#16]:2)—[#6]1:[#6]:[#6]:[#6]:[#6]:[#6]:1-[#6]1:[#6]:[
—#6]:[#6]:[#6]:[#6]:1

(1 row)

Auvailable parameters and their default values are:
¢ MaximizeBonds (true)
e Threshold (1.0)
¢ Timeout (-1, no timeout)
¢ MatchValences (false)
* MatchChiralTag (false) Applies to atoms
* RingMatchesRingOnly (false)

CompleteRingsOnly (false)

MatchStereo (false) Applies to bonds

AtomCompare (“Elements”) can be “Elements”, “Isotopes”, or “Any”
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* BondCompare (“Order”) can be “Order”, “OrderExact”, or “Any”

6.3 Reference Guide

6.3.1 New Types
e mol : an rdkit molecule. Can be created from a SMILES via direct type conversion, for example:
‘clceceec]’::mol creates a molecule from the SMILES ‘clcccecl’

* gqmol : an rdkit molecule containing query features (i.e. constructed from SMARTS). Can be created from
a SMARTS via direct type conversion, for example: ‘clccce[c,n]l’::qmol creates a query molecule from the
SMARTS ‘clcecc[c,n]l’

* sfp : a sparse count vector fingerprint (SparselntVect in C++ and Python)

* bfp : a bit vector fingerprint (ExplicitBitVect in C++ and Python)

6.3.2 Parameters
¢ rdkit.tanimoto_threshold : threshold value for the Tanimoto similarity operator. Searches done using Tanimoto
similarity will only return results with a similarity of at least this value.

* rdkit.dice_threshold : threshold value for the Dice similiarty operator. Searches done using Dice similarity will
only return results with a similarity of at least this value.

¢ rdkit.do_chiral_sss : toggles whether or not stereochemistry is used in substructure matching. (available from
2013_03 release).

* rdkit.sss_fp_size : the size (in bits) of the fingerprint used for substructure screening.
* rdkit.morgan_fp_size : the size (in bits) of morgan fingerprints

* rdkit.featmorgan_fp_size : the size (in bits) of featmorgan fingerprints

* rdkit.layered_fp_size : the size (in bits) of layered fingerprints

* rdkit.rdkit_fp_size : the size (in bits) of RDKit fingerprints

* rdkit.torsion_fp_size : the size (in bits) of topological torsion bit vector fingerprints
* rdkit.atompair_fp_size : the size (in bits) of atom pair bit vector fingerprints

* rdkit.avalon_fp_size : the size (in bits) of avalon fingerprints

6.3.3 Operators

Similarity search
* % : operator used for similarity searches using Tanimoto similarity. Returns whether or not the Tanimoto
similarity between two fingerprints (either two sfp or two bfp values) exceeds rdkit.tanimoto_threshold.

e # : operator used for similarity searches using Dice similarity. Returns whether or not the Dice similarity
between two fingerprints (either two sfp or two bfp values) exceeds rdkit.dice_threshold.

* \<%> : used for Tanimoto KNN searches (to return ordered lists of neighbors).

* \<#>: used for Dice KNN searches (to return ordered lists of neighbors).
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Substructure and exact structure search

* @> : substructure search operator. Returns whether or not the mol or gmol on the right is a substructure of the
mol on the left.

* \<@ : substructure search operator. Returns whether or not the mol or qmol on the left is a substructure of the
mol on the right.

e @=: returns whether or not two molecules are the same.

Molecule comparison

* \<: returns whether or not the left mol is less than the right mol

* >: returns whether or not the left mol is greater than the right mol

e = returns whether or not the left mol is equal to the right mol

* \<=: returns whether or not the left mol is less than or equal to the right mol

* >=: returns whether or not the left mol is greater than or equal to the right mol

Note Two molecules are compared by making the following comparisons in order. Later comparisons are only made
if the preceding values are equal:

# Number of atoms # Number of bonds # Molecular weight # Number of rings

If all of the above are the same and the second molecule is a substructure of the first, the molecules are declared equal,
Otherwise (should not happen) the first molecule is arbitrarily defined to be less than the second.

There are additional operators defined in the cartridge, but these are used for internal purposes.

6.3.4 Functions

Fingerprint Related

Generating fingerprints

morgan_fp(mol,int default 2) : returns an sfp which is the count-based Morgan fingerprint for a molecule using
connectivity invariants. The second argument provides the radius. This is an ECFP-like fingerprint.

morganbv_fp(mol,int default 2) : returns a bfp which is the bit vector Morgan fingerprint for a molecule using
connectivity invariants. The second argument provides the radius. This is an ECFP-like fingerprint.

featmorgan_fp(mol,int default 2) : returns an sfp which is the count-based Morgan fingerprint for a molecule
using chemical-feature invariants. The second argument provides the radius. This is an FCFP-like fingerprint.

featmorganbv_fp(mol,int default 2) : returns a bfp which is the bit vector Morgan fingerprint for a molecule
using chemical-feature invariants. The second argument provides the radius. This is an FCFP-like fingerprint.

rdkit_fp(mol) : returns a bfp which is the RDKit fingerprint for a molecule. This is a daylight-fingerprint using
hashed molecular subgraphs.

atompair_fp(mol) : returns an sfp which is the count-based atom-pair fingerprint for a molecule.

atompairbv_fp(mol) : returns a bfp which is the bit vector atom-pair fingerprint for a molecule.

torsion_fp(mol) : returns an sfp which is the count-based topological-torsion fingerprint for a molecule.

torsionbv_fp(mol) : returns a bfp which is the bit vector topological-torsion fingerprint for a molecule.
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e layered_fp(mol) : returns a bfp which is the layered fingerprint for a molecule. This is an experimental sub-

structure fingerprint using hashed molecular subgraphs.

* maccs_fp(mol) : returns a bfp which is the MACCS fingerprint for a molecule (available from 2013_01 release).

Working with fingerprints

tanimoto_sml(fp,fp) : returns the Tanimoto similarity between two fingerprints of the same type (either two sfp
or two bfp values).

dice_sml(fp,fp) : returns the Dice similarity between two fingerprints of the same type (either two sfp or two
bfp values).

size(bfp) : returns the length of (number of bits in) a bfp.
add(sfp,sfp) : returns an sfp formed by the element-wise addition of the two sfp arguments.
subtract(sfp,sfp) : returns an sfp formed by the element-wise subtraction of the two sfp arguments.

all_values_lIt(sfp,int) : returns a boolean indicating whether or not all elements of the sfp argument are less than
the int argument.

all_values_gt(sfp,int) : returns a boolean indicating whether or not all elements of the sfp argument are greater
than the int argument.

Fingerprint I/0

* bfp_to_binary_text(bfp) : returns a bytea with the binary string representation of the fingerprint that can be

converted back into an RDK:it fingerprint in other software. (available from Q3 2012 (2012_09) release)

* bfp_from_binary_text(bytea) : constructs a bfp from a binary string representation of the fingerprint. (available

Jrom Q3 2012 (2012_09) release)

Molecule Related

Molecule 1/0 and Validation

is_valid_smiles(smiles) : returns whether or not a SMILES string produces a valid RDKit molecule.
is_valid_ctab(ctab) : returns whether or not a CTAB (mol block) string produces a valid RDKit molecule.
is_valid_smarts(smarts) : returns whether or not a SMARTS string produces a valid RDKit molecule.

is_valid_mol_pkl(bytea) : returns whether or not a binary string (bytea) can be converted into an RDKit
molecule. (available from Q3 2012 (2012_09) release)

mol_from_smiles(smiles) : returns a molecule for a SMILES string, NULL if the molecule construction fails.
mol_from_smarts(smarts) : returns a molecule for a SMARTS string, NULL if the molecule construction fails.

mol_from_ctab(ctab, bool default false) : returns a molecule for a CTAB (mol block) string, NULL if the
molecule construction fails. The optional second argument controls whether or not the molecule’s coordinates
are saved.

mol_from_pkl(bytea) : returns a molecule for a binary string (bytea), NULL if the molecule construction fails.
(available from Q3 2012 (2012_09) release)

gmol_from_smiles(smiles) : returns a query molecule for a SMILES string, NULL if the molecule construction
fails. Explicit Hs in the SMILES are converted into query features on the attached atom.
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gmol_from_ctab(ctab, bool default false) : returns a query molecule for a CTAB (mol block) string, NULL if
the molecule construction fails. Explicit Hs in the SMILES are converted into query features on the attached
atom. The optional second argument controls whether or not the molecule’s coordinates are saved.

mol_to_smiles(mol) : returns the canonical SMILES for a molecule.
mol_to_smarts(mol) : returns SMARTS string for a molecule.
mol_to_pkl(mol) : returns binary string (bytea) for a molecule. (available from Q3 2012 (2012_09) release)

mol_to_ctab(mol,bool default true) : returns a CTAB (mol block) string for a molecule. The optional second
argument controls whether or not 2D coordinates will be generated for molecules that don’t have coordinates.
(available from the 2014_03 release)

Substructure operations

substruct(mol,mol) : returns whether or not the second mol is a substructure of the first.

substruct_count(mol,mol,bool default true) : returns the number of substructure matches between the second
molecule and the first. The third argument toggles whether or not the matches are uniquified. (available from
2013_03 release)

Descriptors

mol_amw(mol) : returns the AMW for a molecule.
mol_logp(mol) : returns the MolLogP for a molecule.

mol_tpsa(mol) : returns the topological polar surface area for a molecule (available from Q1 2011 (2011_03)
release).

mol_fractioncsp3(mol) : returns the fraction of carbons that are sp3 hybridized (available from 2013_03 re-
lease).

mol_hba(mol) : returns the number of Lipinski H-bond acceptors (i.e. number of Os and Ns) for a molecule.

mol_hbd(mol) : returns the number of Lipinski H-bond donors (i.e. number of Os and Ns that have at least one
H) for a molecule.

mol_numatoms(mol) : returns the total number of atoms in a molecule.
mol_numheavyatoms(mol) : returns the number of heavy atoms in a molecule.

mol_numrotatablebonds(mol) : returns the number of rotatable bonds in a molecule (available from Q1 2011
(2011_03) release).

mol_numheteroatoms(mol) : returns the number of heteroatoms in a molecule (available from QI 2011
(2011_03) release).

mol_numrings(mol) : returns the number of rings in a molecule (available from Q1 2011 (2011_03) release).

mol_numaromaticrings(mol) : returns the number of aromatic rings in a molecule (available from 2013_03
release).

mol_numaliphaticrings(mol) : returns the number of aliphatic (at least one non-aromatic bond) rings in a
molecule (available from 2013_03 release).

mol_numsaturatedrings(mol) : returns the number of saturated rings in a molecule (available from 2013_03
release).
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mol_numaromaticheterocycles(mol) : returns the number of aromatic heterocycles in a molecule (available from
2013_03 release).

mol_numaliphaticheterocycles(mol) : returns the number of aliphatic (at least one non-aromatic bond) hetero-
cycles in a molecule (available from 2013_03 release).

mol_numsaturatedheterocycles(mol) : returns the number of saturated heterocycles in a molecule (available
from 2013_03 release).

mol_numaromaticcarbocycles(mol) : returns the number of aromatic carbocycles in a molecule (available from
2013_03 release).

mol_numaliphaticcarbocycles(mol) : returns the number of aliphatic (at least one non-aromatic bond) carbocy-
cles in a molecule (available from 2013_03 release).

mol_numsaturatedcarbocycles(mol) : returns the number of saturated carbocycles in a molecule (available from
2013_03 release).

mol_inchi(mol) : returns an InChl for the molecule. (available from the 2011_06 release, requires that the
RDKit be built with InChl support).

mol_inchikey(mol) : returns an InChl key for the molecule. (available from the 2011_06 release, requires that
the RDKit be built with InChl support).

mol_formula(mol,bool default false, bool default true) : returns a string with the molecular formula. The second
argument controls whether isotope information is included in the formula; the third argument controls whether
“D” and “T” are used instead of [2H] and [3H]. (available from the 2014_03 release)

Connectivity Descriptors

MCS

mol_chiOv(mol) - mol_chi4v(mol) : returns the ChiXv value for a molecule for X=0-4 (available from 2012_01
release).

mol_chiOn(mol) - mol_chi4n(mol) : returns the ChiXn value for a molecule for X=0-4 (available from 2012_01
release).

mol_kappal(mol) - mol_kappa3(mol) : returns the kappaX value for a molecule for X=1-3 (available from
2012_01 release).

mol_numspiroatoms : returns the number of spiro atoms in a molecule (available from 2015_09 release).

mol_numbridgeheadatoms : returns the number of bridgehead atoms in a molecule (available from 2015_09
release).

fmcs(mols) : an aggregation function that calculates the MCS for a set of molecules

fmcs_smiles(text, json default *’) : calculates the MCS for a space-separated set of SMILES. The optional json
argument is used to provide parameters to the MCS code.

Other

rdkit_version() : returns a string with the cartridge version number.

There are additional functions defined in the cartridge, but these are used for internal purposes.

106

Chapter 6. The RDKit database cartridge



RDKit Documentation, Release 2016.03.1

6.4 Using the Cartridge from Python

The recommended adapter for connecting to postgresql is pyscopg2 (https://pypi.python.org/pypi/psycopg2).

Here’s an example of connecting to our local copy of ChEMBL and doing a basic substructure search:

>>> import psycopg2

>>> conn = psycopgz2.connect (database="chembl 16")
>>> curs = conn.cursor ()
>>> curs.execute('select » from rdk.mols where m@>%s', ('clcccc2clnncec2',))

>>> curs.fetchone ()
(9830, 'CC(C)Sclccc (CC2CCN (C3CCN(C (=0)cd4cnnchbececececeb54)CC3)CC2)cecl’)

That returns a SMILES for each molecule. If you plan to do more work with the molecules after retrieving them, it is
much more efficient to ask postgresql to give you the molecules in pickled form:

>>> curs.execute ('select molregno,mol_send(m) from rdk.mols where m@> "
—'clccecc2celnnec?2!',))

>>> row = curs.fetchone ()

>>> row

(9830, <read-only buffer for 0Ox...>)

These pickles can then be converted into molecules:

>>> from rdkit import Chem

>>> m = Chem.Mol (str(row[1l]))

>>> Chem.MolToSmiles (m, True)

'CC(C)Sclcece (CC2CCN (C3CCN (C (=0) cdcnnecbeecececb4)CC3)CC2)cel!

6.5 License

This document is copyright (C) 2013-2015 by Greg Landrum

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. To view a copy of this license,
visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 543 Howard Street, Sth
Floor, San Francisco, California, 94105, USA.

The intent of this license is similar to that of the RDKit itself. In simple words: “Do whatever you want with it, but
please give us some credit.”
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