NiaARM
Release 0.1.5

Ziga Stupan, Iztok Fister Jr.

May 01, 2022

USER DOCUMENTATION

1 General outline of the framework 3
2 Detailed insights S
3 Documentation 7
3.1 Getting Started e e e e e e e e 7
3.1.1 Installation L e e e e e e e e e e 7

3120 USAZE . v v o e e e e e e e e e e e e e e 7

3.1.3 IntereSt MEasUres v v v v v it e 12

314 Exampleso e e e e e e e e 12

3.2 Command Line Interface e 12
32,1 USaGe . . v v o e e 12

3.3 Installation e e e e e e e 16
3.3.1 Setup development environment oL e e e e e e e e 16

34 Testing e e 17

3.5 Documentation e e e e e e e e e e e e e e e e e 17
3.6 APIReference e 17
3.6.1 Dataset e e e e e e e e e e e e e e e e e e 17

3.6.2 Feature e e e e e e e e e e e e 18

3.63 MINE o e e e e e e e e e e e e e e e e e e e 18

3.6.4 NiaARM e 19

3.6.5 Rule e e e 20

3.6.6 RuleList e e e e e 22

3.6.7 Visualize e e e e e e e 23

3.7 Contributingto NiaARM e 24
3.7.1 Codeof Conduct e e e e 24

372 How CanlIContribute? e 24

3.8 Contributor Covenant Code of Conduct 24
3.8.1 OurPledge e e e e e 24

3.82 OurStandards e e e e e e e e e e e e e e 24

3.8.3 Enforcement Responsibilities Lo oo 25

384 Scope ... e 25

3.8.5 Enforcement. e e e 25

3.8.6 Enforcement Guidelines e e 25

3.8.7 Attribution L L L e e e e e e e e e e 26

3.9 LICENSE v e e e e e e e e e e e e e e e 26
Bibliography 29
Python Module Index 31

Index

33

NiaARM, Release 0.1.5

NiaARM is a minimalistic framework for numerical association rule mining.
* Free software: MIT license
* Github repository: https://github.com/firefly-cpp/NiaARM
¢ Python versions: 3.7.x, 3.8.x, 3.9.x, 3.10.x

USER DOCUMENTATION 1

https://github.com/firefly-cpp/NiaARM

NiaARM, Release 0.1.5

2 USER DOCUMENTATION

CHAPTER
ONE

GENERAL OUTLINE OF THE FRAMEWORK

NiaARM is a framework for Association Rule Mining based on nature-inspired algorithms for optimization. The frame-
work is written fully in Python and runs on all platforms. NiaARM allows users to preprocess the data in a transaction
database automatically, to search for association rules and provide a pretty output of the rules found. This framework
also supports numerical and real-valued types of attributes besides the categorical ones. Mining the association rules
is defined as an optimization problem, and solved using the nature-inspired algorithms that come from the related
framework called NiaPy.

NiaARM, Release 0.1.5

4 Chapter 1. General outline of the framework

CHAPTER
TWO

DETAILED INSIGHTS

The current version includes (but is not limited to) the following functions:
* loading datasets in CSV format,
* preprocessing of data,
» searching for association rules,
* providing output of mined association rules,

* generating statistics about mined association rules.

NiaARM, Release 0.1.5

6 Chapter 2. Detailed insights

CHAPTER
THREE

DOCUMENTATION

The main documentation is organized into a couple of sections:
* User Documentation
* Developer Documentation
e API Reference
* About

3.1 Getting Started
This section is going to show you how to use the NiaARM framework.

3.1.1 Installation

You can install NiaARM package using the following command:

pip install niaarm

3.1.2 Usage

Loading Data

In NiaARM, data loading is done via the Dataset class. There are two options for loading data:

Option 1: Directly from file

from niaarm import Dataset

dataset = Dataset('Abalone.csv')
print(dataset)

Option 2: From a pandas DataFrame (recommended)

This option is recommended, as it allows you to preprocess the data before mining.

NiaARM, Release 0.1.5

import pandas as pd
from niaarm import Dataset

df = pd.read_csv('Abalone.csv')
Preprocess the dataframe. ..
dataset = Dataset(df)
print(dataset)

Output:

DATASET INFO:
Number of transactions: 4177
Number of features: 9

FEATURE INFO:

Sex Length Diameter Height Whole weight Shucked weight Viscera.
—weight Shell weight Rings

dtype categorical float float float float float o
—float float int

min_val N/A 0.075 0.055 0.0 0.002 0.001 0.
0005 0.0015 1

max_val N/A 0.815 0.65 1.13 2.8255 1.488 0.
76 1.005 29

categories [M, F, I] N/A N/A N/A N/A N/A N/
<A N/A N/A

Mining Association Rules

Once the data has been loaded, we can run our mining algorithm.

The key component here is our NiaARM class, which inherits from NiaPy’s Problem class. It implements numerical
association rule mining as a real valued, single objective, unconstrained maximization problem (more details on this
approach can be found here and here). To summarize, for each solution vector a Rule is built, and it’s fitness is computed
as a weighted sum of selected interest measures (metrics). The rule is then appended to a list of rules, which can be
accessed through the NiaARM class.

The NiaARM class takes the dataset’s dimension (calculated dimension of the optimization problem), features, and
transactions (all attributes of the Dataset class) and the metrics selected for the fitness function. The metrics can
either be passed in as a sequence of strings, in which case the weights of the metrics will be set to 1, or you can pass
in a dict containing pairs of {'metric_name': weight}. You can also enable logging of fitness improvements by
setting the 1ogging parameter to True.

Bellow is a simple example of mining association rules on the Abalone dataset that we loaded above. For this example
we picked Differential Evolution, specifically DE/rand/1/bin, which we’ll be running for 50 iterations. All available
algorithms can be found in the NiaPy documentation. We’ve selected the metrics: ‘support’, ‘confidence’, ‘inclusion’
and ‘amplitude’ for the fitness function. We then sort the rules by fitness in descending order and export them to csv.

from niaarm import NiaARM
from niapy.task import OptimizationType, Task
from niapy.algorithms.basic import DifferentialEvolution

(continues on next page)

8 Chapter 3. Documentation

https://link.springer.com/chapter/10.1007/978-3-030-68154-8_19
http://www.iztok-jr-fister.eu/static/publications/231.pdf
https://niapy.org/en/stable/

NiaARM, Release 0.1.5

(continued from previous page)

DE/rand/1/bin

algorithm = DifferentialEvolution(population_size=50,
differential_weight=0.8,
crossover_probability=0.9)

metrics = ('support', 'confidence', 'inclusion', 'amplitude')

problem = NiaARM(dataset.dimension, dataset.features, dataset.transactions, metrics,.
—.logging=True)

task = Task(problem, max_iters=50, optimization_type=OptimizationType.MAXIMIZATION)

algorithm.run(task)

problem.rules.sort(by="£fitness', reverse=True)
problem.rules.to_csv('output.csv')

The mined rules are stored in problem.rules, a RuleList. A RuleList is a thin wrapper around a normal python
list, with the added functionalities of sorting by metric, exporting rules to csv, and properties for getting statistical data
about the rules. Printing a RuleList prints a statistical report of the rules in it.

QOutput:

Fitness: 0.4421065111459649, Support: 0.00023940627244433804, Confidence: 1.0,.
—Inclusion: 0.3333333333333333, Amplitude: 0.43485330497808217

Fitness: 0.5363319939110781, Support: 0.006942781900885803, Confidence: 0.
-.9354838709677419, Inclusion: 0.5555555555555556, Amplitude: 0.6473457672201293

Fitness: 0.5395969006117709, Support: 0.1812305482403639, Confidence: 0.9895424836601308,
< Inclusion: 0.4444444444444444, Amplitude: 0.5431701261021447

Fitness: 0.5560783231641568, Support: 0.0023940627244433805, Confidence: 1.0, Inclusion:.
—.0.6666666666666666, Amplitude: ®.5552525632655172

Fitness: 0.5711107256845077, Support: 0.5997127124730668, Confidence: 1.0, Inclusion: 0.
-»3333333333333333, Amplitude: 0.3513968569316307

Fitness: 0.5970815767218225, Support: 0.8099114196791956, Confidence: 0.9955856386109476,
— Inclusion: ©.3333333333333333, Amplitude: 0.2494959152638132

Fitness: 0.6479501714015481, Support: 0.7455111323916687, Confidence: 0.9860671310956302,
<, Inclusion: ©.3333333333333333, Amplitude: 0.5268890887855602

Fitness: 0.6497709183879634, Support: 0.9820445295666747, Confidence: 1.0, Inclusion: 0.
,4444444444444444, Amplitude: 0.17259469954073503

Fitness: 0.6522418829904134, Support: 0.9176442422791478, Confidence: 0.9422320550639135,
< Inclusion: 0.4444444444444444, Amplitude: 0.304646790174148

Fitness: 0.6600433108204055, Support: 0.9762987790280105, Confidence: 1.0, Inclusion: 0.
-»5555555555555556, Amplitude: 0.1083189086980556

Fitness: 0.6625114159138297, Support: 0.9209959300933684, Confidence: 1.0, Inclusion: 0.
-+3333333333333333, Amplitude: 0.39571640022861654

Fitness: 0.6748446186051374, Support: 0.9916207804644481, Confidence: 0.9916207804644481,
< Inclusion: 0.4444444444444444, Amplitude: 0.27169246904720923

Fitness: 0.6868285539707781, Support: 0.949006463969356, Confidence: 0.9927372902579514, ..
—Inclusion: ®.5555555555555556, Amplitude: 0.25001490610024923

Rules exported to output.csv

3.1. Getting Started 9

NiaARM, Release 0.1.5

Mining Association Rules (Simplified)

In addition to the above interface, we provide a much simpler one in the form of a simple function: get_rules. The
function accepts a dataset object, an algorithm, sequence or dict of metrics, a stopping condition (either max_evals or
max_iters) and a logging flag. The algorithm can either be a NiaPy Algorithm instance, or a string, in which case

it’s parameters can be passed in to the function as additional keyword arguments.

The get_rules function returns a named tuple of (rules, run_time), where rules is a RuleList and run_time is the

run time of the algorithm in seconds.

The same example as above, using get_rules:

from niaarm import get_rules
from niapy.algorithms.basic import DifferentialEvolution

DE/rand/1/bin

algorithm = DifferentialEvolution(population_size=50,
differential_weight=0.8,
crossover_probability=0.9)

metrics = ('support', 'confidence', 'inclusion', 'amplitude')

rules, run_time = get_rules(dataset, algorithm, metrics, max_iters=50)
print(rules)

print(f£'Run Time: {run_time:.4f} seconds')

rules.to_csv('output.csv')

Output:

STATS:

Total rules: 1153

Average fitness: 0.47320577312454054

Average support: 0.3983325861836626

Average confidence: 0.7050696319555724

Average lift: 1.8269022321777044

Average coverage: 0.5791478590164908

Average consequent support: 0.6708142990119975
Average conviction: 80294763647830.92

Average amplitude: 0.33832710930158877

Average inclusion: 0.45109376505733834

Average interestingness: 0.4107718184209992
Average comprehensibility: 0.6225319999993354
Average netconf: 0.08165217509315073

Average Yule's Q: 0.2631267094311884

Average length of antecedent: 2.248048568950564
Average length of consequent: 1.8117953165654814
Run Time: 6.9498 seconds

Rules exported to output.csv

10 Chapter 3.

Documentation

NiaARM, Release 0.1.5

Visualization

The visualize module provides functions for plotting association rules. The only visualization method currently
implemented is the hill_slopes() method, presented in this paper.

from matplotlib import pyplot as plt
from niaarm import Dataset, Rulelist, get_rules
from niaarm.visualize import hill_slopes

dataset = Dataset('datasets/Abalone.csv')

metrics = ('support', 'confidence')

rules, _ = get_rules(dataset, 'DifferentialEvolution', metrics, max_evals=1000,.
—seed=1234)

some_rule = rules[150]

hill_slopes(some_rule, dataset.transactions)

plt.show()

Output:

0.5

0.4

1yB1eH

0.3

0.2

0.1

0.0

3.1. Getting Started 11

https://link.springer.com/chapter/10.1007/978-3-030-62362-3_10

NiaARM, Release 0.1.5

3.1.3 Interest Measures

The framework currently implements the following interest measures (metrics):
* Support
» Confidence
« Lift'
» Coverage
* RHS Support
* Conviction’
* Inclusion
e Amplitude
* Interestingness
* Comprehensibility
* Netconf’
e Yule’s Q’

More information about these interest measures can be found in the API reference of the Rule class.

3.1.4 Examples

You can find the full code and usage examples here.

3.2 Command Line Interface

We provide a simple command line interface, which allows you to easily mine association rules on any input dataset,
output them to a csv file and/or perform a simple statistical analysis on them.

3.2.1 Usage

niaarm -h # or python -m niaarm -h

usage: niaarm [-h] [-v] -i INPUT_FILE [-o OUTPUT_FILE] -a ALGORITHM [-s SEED]
[--max-evals MAX_EVALS] [--max-iters MAX_ITERS] --metrics
METRICS [METRICS ...] [--weights WEIGHTS [WEIGHTS ...]] [--log]
[--show-stats]

Perform ARM, output mined rules as csv, get mined rules' statistics

options:
-h, --help show this help message and exit
-v, --version show program's version number and exit

-i INPUT_FILE, --input-file INPUT_FILE

(continues on next page)

! Not available as fitness metrics.

12 Chapter 3. Documentation

https://github.com/firefly-cpp/NiaARM/tree/main/examples

NiaARM, Release 0.1.5

(continued from previous page)

Input file containing a csv dataset
-0 OUTPUT_FILE, --output-file OUTPUT_FILE

Output file for mined rules
-a ALGORITHM, --algorithm ALGORITHM

Algorithm to use (niapy class name, e.g.

DifferentialEvolution)
-s SEED, --seed SEED Seed for the algorithm's random number generator
--max-evals MAX_EVALS

Maximum number of fitness function evaluations
--max-iters MAX_ITERS

Maximum number of iterations
--metrics METRICS [METRICS ...]

Metrics to use in the fitness function.
--weights WEIGHTS [WEIGHTS ...]

Weights in range [0, 1] corresponding to --metrics
--log Enable logging of fitness improvements
--stats Display stats about mined rules

Exporting Rules to CSV

Mine Association rules on the Abalone dataset (available here) and output them to a csv file. We’ll run Differential
evolution for 30 iterations, logging fitness improvements. We selected the support and confidence metrics, their weights
will defaulting to 1.

niaarm -i Abalone.csv -a DifferentialEvolution --max-iters 30 --metrics support..
—.confidence -o output.csv --log

After running the above command we are prompted to edit the algorithms parameters in a text editor (vi or nano on
unix, notepad on windows):

GNU nano 5.8 DE_parameters

[Read 7 lines]
Write Oout @V Where Is A X te e Location
)il Read File B Replace a| y @l Go To Line

3.2. Command Line Interface 13

https://archive.ics.uci.edu/ml/datasets/Abalone

NiaARM, Release 0.1.5

After we’re done editing the parameters, we save the file and exit the editor, so the algorithm can run. The output should

look like this:

Fitness: 0.006713839591358101, Support: 0.006703375628441465, Confidence: 0.

—0067243035542747355

Fitness: 0.011814753063668868, Support: 0.005745750538664113, Confidence: 0.

—01788375558867362

Fitness: 0.4774755380849042, Support: 0.027531721331098876, Confidence: 0.

—9274193548387096

Fitness: 0.47886170567035946, Support: 0.24323677280344744, Confidence: 0.

-,7144866385372715

Fitness: 0.5001197031362221,
Fitness: 0.5002394062724443,
Fitness: 0.6182100887777294,
Fitness: 0.7280954808121962,
Fitness: 0.9669248968790327,
Fitness:

L — I — I — I —]

Rules exported to output.csv

Support:
Support:
Support:
Support:
Support:
.0, Support: 1.0, Confidence: 1.0

0.00023940627244433804, Confidence: 1.0
0.00047881254488867607, Confidence: 1.0
0.2824994014843189, Confidence: 0.9539207760711399
0.7115154417045727, Confidence: 0.7446755199198196
0.9492458702418003, Confidence: 0.9846039235162652

The first 10 rules of the generated output.csv file:

14

Chapter 3. Documentation

NiaARM, Release 0.1.5

an- conse- fit- | sup-| con-| lift | cov-| rhs_sugmpertam-| in- | in- | comy net- | yu-
tecedent quent ness| port| fi- er- vic- | pli- | clu- | ter- | pre-| conf| lesq
dence age tion | tude| sion| est- | hen-
ing- | si-
ness bil-
ity
[Height([0.0{ [Shell 1.0 | 1.0 | 1.0 | 1.0] 1.0 | 1.0 | 0.0 | 0.0 | 0.22220 3577145
1.13D] weight([0.00]15, 1.0
1.005])]
[Shucked [Rings([1, 1.0 | 1.0 { 1.0 | 1.0] 1.0 | 1.0 | 0.0 | 0.0 | 0.33338 05557
weight([0.00]1,29])] 1.0
1.488)),
Viscera
weight([0.00D5,
0.76))]
[Shucked [Viscera 10 {10 | 1.0 | 10] 10 [1.0 | 0.0 | 0.0 | 0.22220 3577143
weight([0.00[,weight([0.0005, 1.0
1.4881)] 0.76])]
[Rings([1, [Viscera 1.0 | 1.0 { 1.0 | 1.0] 1.0 | 1.0 | 0.0 | 0.0 | 0.22220 577145
29])] weight([0.0005, 1.0
0.76])]
[Rings([1, [Viscera 1.0 {10 |10 | 10| 10 [1.0 | 0.0 | 0.0 | 0.33338 (36057
29))] weight([0.0005, 1.0
0.76)),
Shucked
weight([0.00]1,
1.488))]
[Shucked [Viscera 1.0 {10 | 1.0 | 10| 1.0 | 1.0 | 0.0 | 0.0 | 0.33338 05357
weight([0.00] ,weight([0.0005, 1.0
1.488]), 0.76])]
Rings([1,
29))]
[Rings([1, [Viscera 1.0 | 1.0 { 1.0 | 1.0] 1.0 | 1.0 | 0.0 | 0.0 | 0.33338 05557
29)), weight([0.0005, 1.0
Shucked 0.76))]
weight([0.00]1,
1.4880)]
[Shucked [Whole 1.0 {10 | 1.0 | 1.0] 1.0 [1.0 | 0.0 | 0.0 | 0.444404001 B (BIB598
weight([0.00[1 ,weight([0.002, 1.0
1.488]), 2.8255)),
Rings([1, Viscera
29D] weight([0.0005,
0.76])]
[Rings([1, | [Viscera 1.0 {10 | 1.0 | 10| 1.0 | 1.0 | 0.0 | 0.0 | 0.33338 05357
29)), weight([0.0005, 1.0
Whole 0.76])]
weight([0.002,
2.8255))]
[Shucked [Height([0.0) 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.0 | 0.0 | 0.33336 (36057
weight([0.00]1,1.13]), 1.0
1.488])] Viscera
weight([0.0005,
0.76])]
3.2. Command Line Interface 15

NiaARM, Release 0.1.5

Displaying Statistics

With the --stats flag we can print basic statistics about the mined association rules. E.g. (for the above run):

STATS:

Total rules: 571

Average fitness: 0.41468758207787

Average support: 0.2218516293252978

Average confidence: 0.6075235348304421

Average lift: 4.594338596271166

Average coverage: 0.42734229269031015

Average consequent support: 0.5431864178239016
Average conviction: 206259068653654.78

Average amplitude: 0.42957104685221487

Average inclusion: 0.39307258221443864

Average interestingness: 0.23451084908249198
Average comprehensibility: 0.6063087509647604
Average netconf: 0.07274126434826349

Average Yule's Q: 0.779065174397917

Average length of antecedent: 1.97723292469352
Average length of consequent: 1.5604203152364273
Run Time: 6.4538s

3.3 Installation

3.3.1 Setup development environment

Requirements

* Poetry: https://python-poetry.org/docs/

After installing Poetry and cloning the project from GitHub, you should run the following command from the root of
the cloned project:

§ poetry install

All of the project’s dependencies should be installed and the project ready for further development. Note that Poetry
creates a separate virtual environment for your project.

Dependencies

Package | Version | Platform
niapy 72.0.1 All
pandas A1.3.5 All
numpy 215 | Al

16 Chapter 3. Documentation

https://python-poetry.org/docs/

NiaARM, Release 0.1.5

Development Dependencies

Package | Version | Platform

Pytest 77.0.1 Any
Extras
Package Version | Platform
Sphinx "N.4.0 Any
sphinx-rtd-theme 71.0.0 Any
sphinxcontrib-bibtex | 72.4.1 Any

3.4 Testing

Before making a pull request, if possible provide tests for added features or bug fixes.
In case any of the test cases fails, those should be fixed before we merge your pull request to master branch.

For the purpose of checking if all test are passing locally you can run following command:

$ poetry run pytest

3.5 Documentation

To locally generate and preview documentation run the following commands in the project root folder:

poetry install --extras docs
poetry run sphinx-build ./docs ./docs/_build

If the build of the documentation is successful, you can preview the documentation in the docs/_build folder by clicking
the index.html file.

3.6 API Reference

3.6.1 Dataset

class niaarm.dataset.Dataset(path_or_df, delimiter=",", header=0, names=None)
Bases: object

Class for working with a dataset.
Parameters

e path_or_df (Union[str, os.PathLike, pandas.DataFrame]) — Path to the dataset
(csv) file or a pandas DataFrame.

e delimiter (str) — The delimiter in the csv file.

3.4. Testing 17

NiaARM, Release 0.1.5

e header (Optional[int]) — Row to use as header (zero-based). Default: 0. Pass
header=None if the file doesn’t contain a header.

* names (Optional [1ist[str]])— List of feature names to use. If the file already contains
a header row, pass header=0 to override the feature names.

transactions
Transactional data.

Type pandas.DataFrame

header
Feature names.

Type list[str]

features
List of features.

Type list[Feature]

dimension
Dimension of the optimization problem for the dataset.

Type int

3.6.2 Feature

class niaarm. feature.Feature (name, dtype, min_val=None, max_val=None, categories=None)
Bases: object

Class representing a feature.
Parameters
e name (str) — Name of the feature.
» dtype (str) — Datatype of the feature.
e min_val (Optional [float])— Minimum value of the feature in the transaction database.
e max_val (Optional [float])— Maximum value of the feature in the transaction database.

» categories (Optional[list[str]]) - Possible categorical feature’s values.

3.6.3 Mine

class niaarm.mine.Result(rules, run_time)
Result of an algorithm run as a namedtuple.

rules
A list of mined association rules.

Type RuleList

run_time
The run time of the algorithm in seconds.

Type float

niaarm.mine.get_rules(dataset, algorithm, metrics, max_evals=inf, max_iters=inf, logging=False, **kwargs)
Mine association rules on a dataset.

18 Chapter 3. Documentation

NiaARM, Release 0.1.5

Parameters

dataset (Dataset) — Dataset to mine rules on.

algorithm (Union[niapy.algorithms.Algorithm, str])- Algorithmtouse. Canbe
either an Algorithm object or the class name as a string. In that case, algorithm parameters
can be passed in as keyword arguments.

metrics (Union[Dict[str, float], Sequence[str]])—Metrics to take into account
when computing the fitness. Metrics can either be passed as a Dict of pairs { ‘metric_name’:
<weight of metric>} or a sequence of metrics as strings, in which case, the weights of the
metrics will be set to 1.

max_evals (Optional [int]) — Maximum number of iterations. Default: inf. At least
one of max_evals or max_iters must be provided.

max_iters (Optional [int]) — Maximum number of fitness evaluations. Default: inf.

logging (bool) — Enable logging of fitness improvements. Default: False.

Returns A named tuple containing the list of mined rules and the algorithm’s run time in seconds.

Return type Result

3.6.4 NiaARM

class niaarm.niaarm.NiaARM(dimension, features, transactions, metrics, logging=False)
Bases: niapy.problems.problem.Problem

Representation of Association Rule Mining as an optimization problem.

The implementation is composed of ideas found in the following papers:

e 1. Fister Jr., A. Iglesias, A. Galvez, J. Del Ser, E. Osaba, I Fister. [Differential evolution for association
rule mining using categorical and numerical attributes] (http://www.iztok-jr-fister.eu/static/publications/
231.pdf) In: Intelligent data engineering and automated learning - IDEAL 2018, pp. 79-88, 2018.

* 1. Fister Jr., V. Podgorelec, 1. Fister. [Improved Nature-Inspired Algorithms for Numeric Association Rule
Mining] (https://link.springer.com/chapter/10.1007/978-3-030-68154-8_19) In: Vasant P., Zelinka I., We-
ber GW. (eds.) Intelligent Computing and Optimization. ICO 2020. Advances in Intelligent Systems and
Computing, vol 1324. Springer, Cham.

Parameters

rules

dimension (int) — Dimension of the optimization problem for the dataset.
features (1ist[Feature]) — List of the dataset’s features.
transactions (pandas.Dataframe) — The dataset’s transactions.

metrics (Union[Dict[str, float], Sequence[str]])-—Metrics to take into account
when computing the fitness. Metrics can either be passed as a Dict of pairs { ‘metric_name’:
<weight of metric>} or a sequence of metrics as strings, in which case, the weights of the
metrics will be set to 1.

logging (bool) — Enable logging of fitness improvements. Default: False.

A list of mined association rules.

Type RuleList

3.6. API Reference 19

http://www.iztok-jr-fister.eu/static/publications/231.pdf
http://www.iztok-jr-fister.eu/static/publications/231.pdf
https://link.springer.com/chapter/10.1007/978-3-030-68154-8_19

NiaARM, Release 0.1.5

build_rule(vector)
Build association rule from the candidate solution.

3.6.5 Rule

class niaarm.rule.Rule(antecedent, consequent, fitness=0.0, transactions=None)
Bases: object

Class representing an association rule.
Parameters
e antecedent (1ist[Feature]) — A list of antecedents of the association rule.
* consequent (Iist[Feature])— A list of consequents of the association rule.
» fitness (Optional[float]) — Fitness value of the association rule.
e transactions (Optional [pandas.DataFrame]) — Transactional database.

cls.metrics
List of all available interest measures.

Type tuple[str]

support
Support is defined on an itemset as the proportion of transactions that contain the attribute X.

n

supp(X) = 15,

where | D| is the number of records in the transactional database.
For an association rule, support is defined as the support of all the attributes in the rule.

supp(X = Y) = 555F

Range: [0, 1]

Reference: Michael Hahsler, A Probabilistic Comparison of Commonly Used Interest Measures for Asso-
ciation Rules, 2015, URL: https://mhahsler.github.io/arules/docs/measures

confidence
Confidence of the rule, defined as the proportion of transactions that contain the consequent in the set of
transactions that contain the antecedent. This proportion is an estimate of the probability of seeing the
consequent, if the antecedent is present in the transaction.

conf(X = Y)= 7“]”55;;(?; ¥)

Range: [0, 1]
Reference: Michael Hahsler, A Probabilistic Comparison of Commonly Used Interest Measures for Asso-
ciation Rules, 2015, URL: https://mhahsler.github.io/arules/docs/measures

lift
Lift measures how many times more often the antecedent and the consequent Y occur together than expected
if they were statistically independent.

lift(X = Y)= 70071;5;;(7; Y)

Range: [0, oo] (1 means independence)

Reference: Michael Hahsler, A Probabilistic Comparison of Commonly Used Interest Measures for Asso-
ciation Rules, 2015, URL: https://mhahsler.github.io/arules/docs/measures

20 Chapter 3. Documentation

https://mhahsler.github.io/arules/docs/measures
https://mhahsler.github.io/arules/docs/measures
https://mhahsler.github.io/arules/docs/measures

NiaARM, Release 0.1.5

coverage
Coverage, also known as antecedent support, is an estimate of the probability that the rule applies to a
randomly selected transaction. It is the proportion of transactions that contain the antecedent.

cover(X = Y) = supp(X)
Range: [0, 1]

Reference: Michael Hahsler, A Probabilistic Comparison of Commonly Used Interest Measures for Asso-
ciation Rules, 2015, URL: https://mhahsler.github.io/arules/docs/measures

rhs_support
Support of the consequent.

RHSsupp(X = Y) = supp(Y)
Range: [0, 1]
Reference: Michael Hahsler, A Probabilistic Comparison of Commonly Used Interest Measures for Asso-

ciation Rules, 2015, URL: https://mhahsler.github.io/arules/docs/measures

conviction
Conviction can be interpreted as the ratio of the expected frequency that the antecedent occurs without the
consequent.

o 1—supp(Y)
conv(X = Y)= —1—conf(§(p=> v
Range: [0, oo] (1 means independence, co means the rule always holds)

Reference: Michael Hahsler, A Probabilistic Comparison of Commonly Used Interest Measures for Asso-
ciation Rules, 2015, URL: https://mhahsler.github.io/arules/docs/measures

inclusion
Inclusion is defined as the ratio between the number of attributes of the rule and all attributes in the database.
inclusion(X = Y) = L;JLYI’

where m is the total number of attributes in the transactional database.
Range: [0, 1]

Reference: 1. Fister Jr., V. Podgorelec, 1. Fister. Improved Nature-Inspired Algorithms for Numeric Asso-
ciation Rule Mining. In: Vasant P., Zelinka I., Weber GW. (eds) Intelligent Computing and Optimization.
ICO 2020. Advances in Intelligent Systems and Computing, vol 1324. Springer, Cham.

amplitude
Amplitude measures the quality of a rule, preferring attributes with smaller intervals.

ampl(X = V) =1- L35 et

(or)—min(oy)’
where n is the total number of attributes in the rule, Uby and Lby, are upper and lower bounds of the selected

attribute, and max (o) and min(oy) are the maximum and minimum feasible values of the attribute o, in
the transactional database.

Range: [0, 1]

Reference: 1. Fister Jr., 1. Fister A brief overview of swarm intelligence-based algorithms for numerical
association rule mining. arXiv preprint arXiv:2010.15524 (2020).

interestingness
Interestingness of the rule, defined as:

interest(X = Y) = supgifp(?; Y), s“”gifp;; Y). (1-— 73“”’)()'(]3':} Y))

3.6. API Reference 21

https://mhahsler.github.io/arules/docs/measures
https://mhahsler.github.io/arules/docs/measures
https://mhahsler.github.io/arules/docs/measures

NiaARM, Release 0.1.5

Here, the first part gives us the probability of generating the rule based on the antecedent, the second part
gives us the probability of generating the rule based on the consequent and the third part is the probability
that the rule won’t be generated. Thus, rules with very high support will be deemed uninteresting.

Range: [0, 1]

Reference: I. Fister Jr., I. Fister A brief overview of swarm intelligence-based algorithms for numerical
association rule mining. arXiv preprint arXiv:2010.15524 (2020).

comprehensibility
Comprehensibility of the rule. Rules with fewer attributes in the consequent are more comprehensible.
— _log(+|Y])
Comp(X — Y) = logo(gl-‘rw

Range: [0, 1]

Reference: I. Fister Jr., I. Fister A brief overview of swarm intelligence-based algorithms for numerical
association rule mining. arXiv preprint arXiv:2010.15524 (2020).

netconf

The netconf metric evaluates the interestingness of association rules depending on the support of the rule
and the support of the antecedent and consequent of the rule.

Su, X Y)—su X)su Y
neteonf(X = Y) = S RIS

Range: [—1, 1] (Negative values represent negative dependence, positive values represent positive depen-
dence and O represents independence)

Reference: E. V. Altay and B. Alatas, “Sensitivity Analysis of MODENAR Method for Mining of Numeric
Association Rules,” 2019 1st International Informatics and Software Engineering Conference (UBMYK),
2019, pp. 1-6, doi: 10.1109/UBMYK48245.2019.8965539.

yulesq

The Yule’s Q metric represents the correlation between two possibly related dichotomous events.

supp(X = Y)supp(-X = =Y)—supp(X = -Y)supp(-X = Y)

yulesq(X = Y) = supp(X = Y)supp(—~X = Y)+supp(X = Y)supp(-X = Y)

Range: [—1, 1] (-1 reflects total negative association, 1 reflects perfect positive association and 0 reflects
independence)

Reference: E. V. Altay and B. Alatas, “Sensitivity Analysis of MODENAR Method for Mining of Numeric
Association Rules,” 2019 Ist International Informatics and Software Engineering Conference (UBMYK),
2019, pp. 1-6, doi: 10.1109/UBMYK48245.2019.8965539.

3.6.6 RuleList

class niaarm.rule_list.RuleList (initlist=None)

Bases: collections.UserList
A list of rules.

get (metric)

Get values of metric for each rule as a numpy array.
Parameters metric (str) — Metric.
Returns Array of metric for all rules.

Return type numpy.ndarray

max (metric)

Get max value of metric.

22

Chapter 3. Documentation

NiaARM, Release 0.1.5

Parameters metric (str)— Metric.
Returns Max value of metric in rule list.
Return type float

mean (metric)
Get mean value of metric.

Parameters metric (str) — Metric.
Returns Mean value of metric in rule list.
Return type float

min(metric)
Get min value of metric.

Parameters metric (str)— Metric.
Returns Min value of metric in rule list.
Return type float

sort (by=/fitness', reverse=True)
Sort rules by metric.

Parameters

¢ by (str) — Metric to sort rules by. Default: ' fitness'.

» reverse (bool) — Sort in descending order. Default: True.

std (metric)
Get standard deviation of metric.

Parameters metric (str) — Metric.
Returns Standard deviation of metric in rule list.
Return type float

to_csv (filename)
Export rules to csv.

Parameters filename (str) - File to save the rules to.

3.6.7 Visualize

niaarm.visualize.hill_slopes (rule, transactions)

Visualize rule as hill slopes.

Reference: Fister, I. et al. (2020). Visualization of Numerical Association Rules by Hill Slopes. In: Analide,
C., Novais, P., Camacho, D., Yin, H. (eds) Intelligent Data Engineering and Automated Learning — IDEAL
2020. IDEAL 2020. Lecture Notes in Computer Science(), vol 12489. Springer, Cham. https://doi.org/10.1007/

978-3-030-62362-3_10
Parameters

e rule (Rule) — Association rule to visualize.

* transactions (pandas.DataFrame) — Transactions as a DataFrame.

Returns Figure and Axes of plot.

Return type tuple[matplotlib.figure.Figure, matplotlib.axes.Axes]

3.6. API Reference

23

https://doi.org/10.1007/978-3-030-62362-3_10
https://doi.org/10.1007/978-3-030-62362-3_10

NiaARM, Release 0.1.5

3.7 Contributing to NiaARM

First off, thanks for taking the time to contribute!

3.7.1 Code of Conduct

This project and everyone participating in it is governed by the Contributor Covenant Code of Conduct. By participat-
ing, you are expected to uphold this code. Please report unacceptable behavior to iztok.fister] @um.si.

3.7.2 How Can | Contribute?
Reporting Bugs

Before creating bug reports, please check existing issues list as you might find out that you don’t need to create one.
When you are creating a bug report, please include as many details as possible in the issue template.

Suggesting Enhancements

Open new issue using the feature request template.

Pull requests

Fill in the pull request template and make sure your code is documented.

3.8 Contributor Covenant Code of Conduct

3.8.1 Our Pledge

We as members, contributors, and leaders pledge to make participation in our community a harassment-free experience
for everyone, regardless of age, body size, visible or invisible disability, ethnicity, sex characteristics, gender identity
and expression, level of experience, education, socio-economic status, nationality, personal appearance, race, religion,
or sexual identity and orientation.

We pledge to act and interact in ways that contribute to an open, welcoming, diverse, inclusive, and healthy community.

3.8.2 Our Standards

Examples of behavior that contributes to a positive environment for our community include:
* Demonstrating empathy and kindness toward other people
* Being respectful of differing opinions, viewpoints, and experiences
* Giving and gracefully accepting constructive feedback
* Accepting responsibility and apologizing to those affected by our mistakes, and learning from the experience
» Focusing on what is best not just for us as individuals, but for the overall community

Examples of unacceptable behavior include:

24 Chapter 3. Documentation

mailto:iztok.fister1@um.si

NiaARM, Release 0.1.5

* The use of sexualized language or imagery, and sexual attention or advances of any kind

* Trolling, insulting or derogatory comments, and personal or political attacks

* Public or private harassment

* Publishing others’ private information, such as a physical or email address, without their explicit permission

 Other conduct which could reasonably be considered inappropriate in a professional setting

3.8.3 Enforcement Responsibilities

Community leaders are responsible for clarifying and enforcing our standards of acceptable behavior and will take
appropriate and fair corrective action in response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.

Community leaders have the right and responsibility to remove, edit, or reject comments, commits, code, wiki edits, is-
sues, and other contributions that are not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.

3.8.4 Scope

This Code of Conduct applies within all community spaces, and also applies when an individual is officially representing
the community in public spaces. Examples of representing our community include using an official e-mail address,
posting via an official social media account, or acting as an appointed representative at an online or offline event.

3.8.5 Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be reported to the community leaders respon-
sible for enforcement at iztok.fister] @um.si. All complaints will be reviewed and investigated promptly and fairly.

All community leaders are obligated to respect the privacy and security of the reporter of any incident.

3.8.6 Enforcement Guidelines

Community leaders will follow these Community Impact Guidelines in determining the consequences for any action
they deem in violation of this Code of Conduct:

1. Correction
Community Impact: Use of inappropriate language or other behavior deemed unprofessional or unwelcome in the
community.

Consequence: A private, written warning from community leaders, providing clarity around the nature of the violation
and an explanation of why the behavior was inappropriate. A public apology may be requested.

3.8. Contributor Covenant Code of Conduct 25

mailto:iztok.fister1@um.si

NiaARM, Release 0.1.5

2. Warning

Community Impact: A violation through a single incident or series of actions.

Consequence: A warning with consequences for continued behavior. No interaction with the people involved, includ-
ing unsolicited interaction with those enforcing the Code of Conduct, for a specified period of time. This includes
avoiding interactions in community spaces as well as external channels like social media. Violating these terms may
lead to a temporary or permanent ban.

3. Temporary Ban

Community Impact: A serious violation of community standards, including sustained inappropriate behavior.

Consequence: A temporary ban from any sort of interaction or public communication with the community for a
specified period of time. No public or private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period. Violating these terms may lead to a permanent
ban.

4. Permanent Ban
Community Impact: Demonstrating a pattern of violation of community standards, including sustained inappropriate
behavior, harassment of an individual, or aggression toward or disparagement of classes of individuals.

Consequence: A permanent ban from any sort of public interaction within the community.

3.8.7 Attribution

This Code of Conduct is adapted from the Contributor Covenant, version 2.0, available at https://www.
contributor-covenant.org/version/2/0/code_of_conduct.html.

Community Impact Guidelines were inspired by Mozilla’s code of conduct enforcement ladder.

For answers to common questions about this code of conduct, see the FAQ at https://www.contributor-covenant.org/faq.
Translations are available at https://www.contributor-covenant.org/translations.

3.9 License

MIT License
Copyright (c) 2021-2022 Ziga Stupan and Iztok Fister Jr.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

(continues on next page)

26 Chapter 3. Documentation

https://www.contributor-covenant.org
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html
https://www.contributor-covenant.org/version/2/0/code_of_conduct.html
https://github.com/mozilla/diversity
https://www.contributor-covenant.org/faq
https://www.contributor-covenant.org/translations

NiaARM, Release 0.1.5

(continued from previous page)

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

References

3.9. License 27

NiaARM, Release 0.1.5

28

Chapter 3. Documentation

BIBLIOGRAPHY

[1] Iztok Fister Jr., Andres Iglesias, Akemi Galvez, Javier Del Ser, Eneko Osaba, and Iztok Fister. Differential evolution
for association rule mining using categorical and numerical attributes. In International conference on intelligent
data engineering and automated learning, 79—88. Springer, 2018.

[2] Iztok Fister Jr, Vili Podgorelec, and Iztok Fister. Improved nature-inspired algorithms for numeric association rule
mining. In International Conference on Intelligent Computing & Optimization, 187-195. Springer, 2020.

[3] Iztok Fister Jr and Iztok Fister. A brief overview of swarm intelligence-based algorithms for numerical association
rule mining. Applied Optimization and Swarm Intelligence, pages 47-59, 2021.

29

NiaARM, Release 0.1.5

30

Bibliography

n

niaarm,
niaarm.
.feature, 18
niaarm.
niaarm.
niaarm.
niaarm.

niaarm

niaarm

?7?
dataset, 17

mine, 18
niaarm, 19
rule, 20
rule_list, 22

.visualize, 23

PYTHON MODULE INDEX

31

NiaARM, Release 0.1.5

32

Python Module Index

A

amplitude (niaarm.rule.Rule attribute), 21

B

build_rule() (niaarm.niaarm.NiaARM method), 19

C

comprehensibility (niaarm.rule.Rule attribute), 22
confidence (niaarm.rule.Rule attribute), 20
conviction (niaarm.rule.Rule attribute), 21
coverage (niaarm.rule.Rule attribute), 20

D

Dataset (class in niaarm.dataset), 17
dimension (niaarm.dataset.Dataset attribute), 18

F

Feature (class in niaarm.feature), 18
features (niaarm.dataset.Dataset attribute), 18

G

get) (niaarm.rule_list.RuleList method), 22
get_rules() (in module niaarm.mine), 18

H

header (niaarm.dataset. Dataset attribute), 18
hill_slopes() (in module niaarm.visualize), 23

inclusion (niaarm.rule.Rule attribute), 21
interestingness (niaarm.rule.Rule attribute), 21

L

lift (niaarm.rule.Rule attribute), 20

M

max () (niaarm.rule_list. RuleList method), 22
mean () (niaarm.rule_list. RuleList method), 23
metrics (niaarm.rule.Rule.cls attribute), 20
min() (niaarm.rule_list.RuleList method), 23
module

INDEX

niaarm, |
niaarm.dataset, 17
niaarm. feature, 18
niaarm.mine, 18
niaarm.niaarm, 19
niaarm.rule, 20
niaarm.rule_list, 22
niaarm.visualize, 23

N

netconf (niaarm.rule.Rule attribute), 22
niaarm

module, 1
NiaARM (class in niaarm.niaarm), 19
niaarm.dataset

module, 17
niaarm. feature

module, 18
niaarm.mine

module, 18
niaarm.niaarm

module, 19
niaarm.rule

module, 20
niaarm.rule_list

module, 22
niaarm.visualize

module, 23

R

Result (class in niaarm.mine), 18
rhs_support (niaarm.rule.Rule attribute), 21
Rule (class in niaarm.rule), 20

Rulelist (class in niaarm.rule_list), 22
rules (niaarm.mine.Result attribute), 18
rules (niaarm.niaarm.NiaARM attribute), 19
run_time (niaarm.mine.Result attribute), 18

S

sort () (niaarm.rule_list.RuleList method), 23
std(Q) (niaarm.rule_list. RuleList method), 23
support (niaarm.rule.Rule attribute), 20

33

NiaARM, Release 0.1.5

T

to_csv() (niaarm.rule_list. RuleList method), 23
transactions (niaarm.dataset.Dataset attribute), 18

Y

yulesq (niaarm.rule.Rule attribute), 22

34 Index

	General outline of the framework
	Detailed insights
	Documentation
	Getting Started
	Installation
	Usage
	Loading Data
	Mining Association Rules
	Mining Association Rules (Simplified)
	Visualization

	Interest Measures
	Examples

	Command Line Interface
	Usage
	Exporting Rules to CSV
	Displaying Statistics

	Installation
	Setup development environment
	Requirements
	Dependencies
	Development Dependencies
	Extras

	Testing
	Documentation
	API Reference
	Dataset
	Feature
	Mine
	NiaARM
	Rule
	RuleList
	Visualize

	Contributing to NiaARM
	Code of Conduct
	How Can I Contribute?
	Reporting Bugs
	Suggesting Enhancements
	Pull requests

	Contributor Covenant Code of Conduct
	Our Pledge
	Our Standards
	Enforcement Responsibilities
	Scope
	Enforcement
	Enforcement Guidelines
	1. Correction
	2. Warning
	3. Temporary Ban
	4. Permanent Ban

	Attribution

	License

	Bibliography
	Python Module Index
	Index

