
miniAudicle and ChucK Shell: New Interfaces for
ChucK Development and Performance

Spencer Salazar, Ge Wang, and Perry Cook†

Department of Computer Science †(also Music), Princeton University
{ssalazar, gewang, prc}@cs.princeton.edu

Abstract
ChucK, a powerful audio synthesis programming language,
currently supporting only a simple command line interface.
Accompanying the ongoing development of the ChucK
language is the production of two new interfaces for ChucK,
the ChucK shell and the miniAudicle. The ChucK shell
provides a lightweight method of access to ChucK in a
shell-like console environment. The miniAudicle offers a
powerful integrated solution to the ChucK development
process and a framework for further enhancements to the
ChucK programming environment. The miniAudicle also
provides a set of generic user interface elements with which
programmers can quickly construct graphical interfaces in
ChucK programs. The miniAudicle streamlines, simplifies,
and expands ChucK development, allowing ChucK
programmers to focus on design and artistic issues while
also exposing ChucK to computer musicians who are
unfamiliar with or averse to the command line.

1 Introduction
ChucK, a programming language for audio synthesis

(Wang and Cook 2003), affords its programmers a rich
digital audio development environment for both traditional
write-compile-run style programming and Wang and Cook’s
on-the-fly programming model (2004). On-the-fly
programming is a concept in which programs can be
modified and controlled at runtime both precisely and
directly, allowing greater power of expression to the
programmer. On-the-fly programming typically requires
some degree of runtime support in a given language.
ChucK provides such capabilities in the form of a virtual
machine, which compiles, executes, and associates different
ChucK programs as programmed. However, ChucK itself
lacks a convenient user interface for its users; to execute
ChucK source files, users must familiarize themselves with
ChucK’s command line interface, accessible only through a
shell environment such as bash. The Audicle, a graphical

Figure 1. The miniAudicle in action.

system for monitoring and modifying ChucK programs,
presents one solution to this problem, but is still in the early
stages of development (Wang and Cook 2004). The
purpose of the ChucK Shell and miniAudicle are to provide
sophisticated, accessible, and convenient interfaces to the
ChucK language and on-the-fly programming.

In this aim, ChucK shell presents users with a native
shell-like interface for interaction with the ChucK virtual
machine. miniAudicle is a graphical user interface for
developing, running, and modifying ChucK programs,
providing a framework for extending the expressive
capabilities of ChucK in possibly unforeseen ways, and
making ChucK more accessible to individuals with little or
no experience with command lines or software
programming.

In Section 2, we shall discuss related work. In Section
3, we shall present the design and implementation of the
ChucK shell, and section 4 describes the design and
implementation of miniAudicle. Section 5 discusses more
broadly the successes and shortcomings of ChucK shell and
miniAudicle, plans for future work, and then concludes.

2 Related Work
One existing extension of the traditional ChucK

interface is the Audicle, an advanced 3 dimensional
graphical interface for interacting with the ChucK
environment (Wang and Cook 2004). The Audicle is a
multi-platform, Open-GL based application supporting
editing, execution, and modification of ChucK programs, as
well as advanced monitoring of ChucK virtual machine
state. While having a well-developed feature set, the
Audicle has several limitations. The Audicle uses OpenGL,
a 3D graphics programming API, to generate its user
interface. Though the Audicle’s interface is highly
functional and visually impressive, by requiring OpenGL
programming, the complexity and time required to
implement new functionality in the Audicle is increased.
Additionally, by implementing its own user interface
primitives, the Audicle intentionally differentiates its
interface from the native graphical user interface API of its
host operating system. This augments the barrier to
accessibility, requiring users to learn a different interface
structure to effectively use the Audicle.

Other software environments for digital audio synthesis
include PureData (Puckette 1997), a visual audio
programming language, SuperCollider (McCartney 1996),
and CSound (Vercoe 1990).

3 ChucK Shell
The goals of the ChucK shell are to simplify and

streamline basic tasks in the ChucK environment, and
potentially provide facilities for more advanced tasks as
needed. The ChucK shell is accessed using the chuck
command line application, by specifying the --shell

command line option. This command alone will invoke the
ChucK shell and also create a ChucK virtual machine, in
separate threads; the shell is implicitly connected to this
virtual machine. It is possible to suppress creation of the
virtual machine by specifying the --empty command,
spawning a shell process which must then be explicitly
connected to a different virtual machine.

The ChucK shell has been designed using fully reusable
and modular components, allowing it to be easily embedded
in both the miniAudicle and the Audicle.

3.1 Shell Commands
The basic ChucK shell commands are add, remove,

replace , removeall , and removelast . These
commands can be invoked by name, or by an associated
symbolic name (see Figure 2). These commands map
directly to the ChucK on-the-fly programming commands of
the same name. Additionally, using the vm @ command,
users can specify a network address and port number to
which these commands are sent (ChucK virtual machines
typically bind to a port on the host machine to listen for
commands over the network). ChucK shell also replicates
selected standard shell commands such as ls , cd, pwd,
source, and alias.

Figure 2. Example ChucK shell commands.

3.2 Inline Coding
The inline coding functionality of ChucK shell allows

users to quickly execute small snippets of ChucK code from
within the shell, without having to employ an external
source file editor. Small snippets of code or even entire
programs can be written without having to leave the shell,
although the latter is not necessarily advisable. This
functionality is primarily intended for the context of a
performance, in which the small time to open a new file in
an editor is significant, and it is only necessary to run some
small snippet of code that does not already exist as a file on
disk.

chuck %> {
code 1> sinosc s => dac;
code 1> while(true) {
code 2> 1::second => now;
code 2> }
code 1> }
chuck %>

chuck %> + sequencer.ck
chuck %> = 1 sequencer-new.ck
chuck %> - 1
chuck %> removeall

Figure 3. Example of inline coding. The lexical
scope level is printed in the command prompt.

Inline code is preceded by an open bracket “{“ and
terminated by a matching close bracket “}” (see Figure 3).
ChucK shell tracks open and close brackets so that
intermediate close brackets are not misinterpreted as the end
of the code fragment. Code fragments can be saved to disk
after they are sent to the virtual machine.

4 miniAudicle
The miniAudicle offers an integrated, graphical

environment for developing audio software using the ChucK
programming language. miniAudicle features a text editor,
an embedded virtual machine, a virtual machine monitor, a
stdin/stderr monitor for displaying log and error messages
from the virtual machine, an embedded ChucK shell, and
support for on-the-fly programming commands like add,
remove and replace. miniAudicle also supports creation and
usage of typical graphical user interface widgets directly
from ChucK code, chiefly for modifying program behavior
and parameters at runtime in a well-defined but expressive
manner. Currently, the miniAudicle uses the Cocoa API in
the Mac OS X operating system to render its graphical user
interface.

The basic layout of the miniAudicle comprises 4
windows. The document window encapsulates ChucK
source code files and presents them for editing, with
common editing features such as syntax highlighting.
Several buttons in the document window correspond to on-
the-fly programming commands, and where applicable will
add, remove, or replace the file open in the editing window.
Multiple document windows can be created, either with a
new blank document or an existing document from disk, as
is typical behavior with text editors.

The second window is the virtual machine monitor (see
Figure 4). The virtual machine monitor can be used to start
and stop the virtual machine. The virtual machine runs in
the address space of the miniAudicle. This virtual machine
accepts on-the-fly programming commands from both the
command line ChucK client and the ChucK shell, by
binding to port 8888 on the host machine. When the virtual
machine is on, the virtual machine monitor also displays a
table of all currently executing ChucK programs on the
virtual machine, showing the unique program identification
number, the filename of the program, and the running time
of that program. Additionally, a small button in each entry
of the table can be pressed to remove the ChucK program
associated with that entry. The virtual machine monitor also
prints the running time of the virtual machine and the
number of programs currently running.

The third window is the console monitor (see Figure 5).
The console monitor simply redirects the stdin and stderr
files to itself, and displays them on screen. In this way, log
and error messages printed by the virtual machine to stdout
and stderr can be displayed to the user without requiring an
actual terminal window open.

The fourth window is the ChucK shell window. This
window is essentially a simple terminal emulator that directs
its input to a ChucK shell instance, and prints any output
from the ChucK shell.

Additionally, the miniAudicle affords ChucK
programmers the capability to dynamically generate new
user interfaces. The miniAudicle user interface elements, or
MAUI Elements, are a set of common user interface widgets
that can be created, manipulated, and queried within a
ChucK program. miniAudicle currently provides several
such elements, including sliders (Figure 6) and buttons for
user input, and simulated light emitting diodes (LED’s) for

Figure 4. The miniAudicle virtual machine
monitor. A “shred” refers to a running ChucK
process.

Figure 5. The miniAudicle console monitor.

providing feedback to the user. An additional “view”
element allows both logical groupings of elements and
physical grouping and positioning of elements within a
window (Figure 7). Elements not placed in a preexisting
window will automatically produce a window in which to
place themselves.

MAUI Elements exist in ChucK as built-in classes that
can be instantiated and accessed as any other ChucK class.
Each element’s associated class has member functions for
creation, accessing and setting properties, display, and
destruction. Additionally, using ChucK’s built-in event
notification support, ChucK programs can elect to block
execution until a user has modified the external state of an
element (for example, Figure 6 top). Notably, ChucK
programs utilizing MAUI Elements are unable to run
outside of the miniAudicle, since support for MAUI
Elements must be explicitly included in the miniAudicle’s
ChucK virtual machine implementation.

5 Conclusions and Future Work
The ChucK shell improves upon ChucK’s basic interface

by reducing the keystrokes required for basic tasks and
providing additional functionality like inline coding. The
miniAudicle offers an integrated environment for ChucK
development, using native GUI APIs of Mac OS X.
Additionally, the miniAudicle supplies an extensible
framework for accessing graphical user interface widgets
from ChucK programs.

Future development plans for miniAudicle include
porting to Microsoft Windows and Linux systems,
automatic completion of code during editing, and
implementation of additional MAUI Elements.
Additionally, plans exist to embed portions of the Audicle
within the miniAudicle.

6 Acknowledgements
Thanks to Adam Tindale for his help in documenting the

ChucK shell and the chuck-users mailing list for their
feedback and suggestions.

References
McCartney, J. 1996. "SuperCollider: A New Real-time Synthesis

Language." In Proceedings of the International Computer
Music Conference. International Computer Music
Association.

Puckette, M. 1997. "Pure Data." In Proceedings of the
International Computer Music Conference. International
Computer Music Association, pp. 269-272.

Vercoe, B. and D. Ellis. 1990. “Real-Time CSOUND: Software
Synthesis with Sensing and Control.” In Proceedings of the
International Computer Music Conference. International
Computer Music Association, pp. 209-211.

Wang, G. and P. R. Cook. 2004. The Audicle: A Context-
Sensitive, On-the-fly Audio Programming Environ/mentality."
In Proceedings of the International Computer Music
Conference. International Computer Music Association.

Wang, G. and P. R. Cook. 2003. ChucK: a Concurrent and On-
the-fly Audio Programming Language. In Proceedings of the
International Computer Music Conference. International
Computer Music Association, pp. 219-226.

Wang, G. and P. R. Cook. 2004. On-the-fly Programming: Using
Code as an Expressive Musical Instrument. In Proceedings of
the International Conference on New Interfaces for Musical
Expression. pp. 138-143.

Figure 7. An interface constructed in miniAudicle.

Figure 6. Example ChucK code (top) for invoking
the MAUI Slider element. This example generates
a sine wave. It also displays a slider (bottom), with
values between 100 and 10000. The frequency of
the sine wave is mapped to the value of the slider.

MAUI_Slider slider;
slider.range(100, 10000);
slider.value(100);
slider.name("frequency");
slider.display();

sinosc s => dac;

while(true)
{
 slider.value() => s.freq;
 slider => now;
}

