/* Copyright (C) 2001-2021 Artifex Software, Inc. All Rights Reserved. This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license and may not be copied, modified or distributed except as expressly authorized under the terms of the license contained in the file LICENSE in this distribution. Refer to licensing information at http://www.artifex.com or contact Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato, CA 94945, U.S.A., +1(415)492-9861, for further information. */ /* Implementation of LL3 Functions */ #include "math_.h" #include "memory_.h" #include "gx.h" #include "gserrors.h" #include "gsfunc3.h" #include "gsparam.h" #include "gxfunc.h" #include "gxarith.h" #include "stream.h" /* ---------------- Utilities ---------------- */ #define MASK1 ((uint)(~0) / 3) /* * Free an array of subsidiary Functions. Note that this may be called * before the Functions array has been fully initialized. Note also that * its argument conforms to the Functions array in the parameter structure, * but it (necessarily) deconstifies it. */ static void fn_free_functions(const gs_function_t *const * Functions, int count, gs_memory_t * mem) { int i; for (i = count; --i >= 0;) if (Functions[i]) gs_function_free((gs_function_t *)Functions[i], true, mem); gs_free_const_object(mem, Functions, "Functions"); } /* * Scale an array of subsidiary functions. Note that the scale may either * be propagated unchanged (step_ranges = false) or divided among the * (1-output) subfunctions (step_ranges = true). */ static int fn_scale_functions(gs_function_t ***ppsfns, const gs_function_t *const *pfns, int count, const gs_range_t *pranges, bool step_ranges, gs_memory_t *mem) { gs_function_t **psfns; int code = alloc_function_array(count, &psfns, mem); const gs_range_t *ranges = pranges; int i; if (code < 0) return code; for (i = 0; i < count; ++i) { int code = gs_function_make_scaled(pfns[i], &psfns[i], ranges, mem); if (code < 0) { fn_free_functions((const gs_function_t *const *)psfns, count, mem); return code; } if (step_ranges) ++ranges; } *ppsfns = psfns; return 0; } /* ---------------- Exponential Interpolation functions ---------------- */ typedef struct gs_function_ElIn_s { gs_function_head_t head; gs_function_ElIn_params_t params; } gs_function_ElIn_t; private_st_function_ElIn(); /* Evaluate an Exponential Interpolation function. */ static int fn_ElIn_evaluate(const gs_function_t * pfn_common, const float *in, float *out) { const gs_function_ElIn_t *const pfn = (const gs_function_ElIn_t *)pfn_common; double arg = in[0], raised; int i; if (arg < pfn->params.Domain[0]) arg = pfn->params.Domain[0]; else if (arg > pfn->params.Domain[1]) arg = pfn->params.Domain[1]; raised = pow(arg, pfn->params.N); for (i = 0; i < pfn->params.n; ++i) { float v0 = (pfn->params.C0 == 0 ? 0.0 : pfn->params.C0[i]); float v1 = (pfn->params.C1 == 0 ? 1.0 : pfn->params.C1[i]); double value = v0 + raised * (v1 - v0); if (pfn->params.Range) { float r0 = pfn->params.Range[2 * i], r1 = pfn->params.Range[2 * i + 1]; if (value < r0) value = r0; else if (value > r1) value = r1; } out[i] = value; if_debug3('~', "[~]ElIn %g => [%d]%g\n", arg, i, out[i]); } return 0; } /* Test whether an Exponential function is monotonic. (They always are.) */ static int fn_ElIn_is_monotonic(const gs_function_t * pfn_common, const float *lower, const float *upper, uint *mask) { const gs_function_ElIn_t *const pfn = (const gs_function_ElIn_t *)pfn_common; if (lower[0] > pfn->params.Domain[1] || upper[0] < pfn->params.Domain[0] ) return_error(gs_error_rangecheck); *mask = 0; return 1; } /* Write Exponential Interpolation function parameters on a parameter list. */ static int fn_ElIn_get_params(const gs_function_t *pfn_common, gs_param_list *plist) { const gs_function_ElIn_t *const pfn = (const gs_function_ElIn_t *)pfn_common; int ecode = fn_common_get_params(pfn_common, plist); int code; if (pfn->params.C0) { if ((code = param_write_float_values(plist, "C0", pfn->params.C0, pfn->params.n, false)) < 0) ecode = code; } if (pfn->params.C1) { if ((code = param_write_float_values(plist, "C1", pfn->params.C1, pfn->params.n, false)) < 0) ecode = code; } if ((code = param_write_float(plist, "N", &pfn->params.N)) < 0) ecode = code; return ecode; } /* Make a scaled copy of an Exponential Interpolation function. */ static int fn_ElIn_make_scaled(const gs_function_ElIn_t *pfn, gs_function_ElIn_t **ppsfn, const gs_range_t *pranges, gs_memory_t *mem) { gs_function_ElIn_t *psfn = gs_alloc_struct(mem, gs_function_ElIn_t, &st_function_ElIn, "fn_ElIn_make_scaled"); float *c0; float *c1; int code, i; if (psfn == 0) return_error(gs_error_VMerror); psfn->params = pfn->params; psfn->params.C0 = c0 = fn_copy_values(pfn->params.C0, pfn->params.n, sizeof(float), mem); psfn->params.C1 = c1 = fn_copy_values(pfn->params.C1, pfn->params.n, sizeof(float), mem); if ((code = ((c0 == 0 && pfn->params.C0 != 0) || (c1 == 0 && pfn->params.C1 != 0) ? gs_note_error(gs_error_VMerror) : 0)) < 0 || (code = fn_common_scale((gs_function_t *)psfn, (const gs_function_t *)pfn, pranges, mem)) < 0) { gs_function_free((gs_function_t *)psfn, true, mem); return code; } for (i = 0; i < pfn->params.n; ++i) { double base = pranges[i].rmin, factor = pranges[i].rmax - base; c1[i] = c1[i] * factor + base; c0[i] = c0[i] * factor + base; } *ppsfn = psfn; return 0; } /* Free the parameters of an Exponential Interpolation function. */ void gs_function_ElIn_free_params(gs_function_ElIn_params_t * params, gs_memory_t * mem) { gs_free_const_object(mem, params->C1, "C1"); params->C1 = NULL; gs_free_const_object(mem, params->C0, "C0"); params->C0 = NULL; fn_common_free_params((gs_function_params_t *) params, mem); } /* Serialize. */ static int gs_function_ElIn_serialize(const gs_function_t * pfn, stream *s) { uint n; const gs_function_ElIn_params_t * p = (const gs_function_ElIn_params_t *)&pfn->params; int code = fn_common_serialize(pfn, s); float C0_default[2] = {0, 0}; float C1_default[2] = {1, 0}; if (code < 0) return code; if (p->C0) code = sputs(s, (const byte *)&p->C0[0], sizeof(p->C0[0]) * p->n, &n); else code = sputs(s, (const byte *)&C0_default, sizeof(float) * 2, &n); if (code < 0) return code; if (p->C1) code = sputs(s, (const byte *)&p->C1[0], sizeof(p->C1[0]) * p->n, &n); else code = sputs(s, (const byte *)&C1_default, sizeof(float) * 2, &n); if (code < 0) return code; return sputs(s, (const byte *)&p->N, sizeof(p->N), &n); } /* Allocate and initialize an Exponential Interpolation function. */ int gs_function_ElIn_init(gs_function_t ** ppfn, const gs_function_ElIn_params_t * params, gs_memory_t * mem) { static const gs_function_head_t function_ElIn_head = { function_type_ExponentialInterpolation, { (fn_evaluate_proc_t) fn_ElIn_evaluate, (fn_is_monotonic_proc_t) fn_ElIn_is_monotonic, gs_function_get_info_default, (fn_get_params_proc_t) fn_ElIn_get_params, (fn_make_scaled_proc_t) fn_ElIn_make_scaled, (fn_free_params_proc_t) gs_function_ElIn_free_params, fn_common_free, (fn_serialize_proc_t) gs_function_ElIn_serialize, } }; int code; *ppfn = 0; /* in case of error */ code = fn_check_mnDR((const gs_function_params_t *)params, 1, params->n); if (code < 0) return code; if ((params->C0 == 0 || params->C1 == 0) && params->n != 1) return_error(gs_error_rangecheck); if (params->N != floor(params->N)) { /* Non-integral exponent, all inputs must be non-negative. */ if (params->Domain[0] < 0) return_error(gs_error_rangecheck); } if (params->N < 0) { /* Negative exponent, input must not be zero. */ if (params->Domain[0] <= 0 && params->Domain[1] >= 0) return_error(gs_error_rangecheck); } { gs_function_ElIn_t *pfn = gs_alloc_struct(mem, gs_function_ElIn_t, &st_function_ElIn, "gs_function_ElIn_init"); if (pfn == 0) return_error(gs_error_VMerror); pfn->params = *params; pfn->params.m = 1; pfn->head = function_ElIn_head; *ppfn = (gs_function_t *) pfn; } return 0; } /* ---------------- 1-Input Stitching functions ---------------- */ typedef struct gs_function_1ItSg_s { gs_function_head_t head; gs_function_1ItSg_params_t params; } gs_function_1ItSg_t; private_st_function_1ItSg(); /* Evaluate a 1-Input Stitching function. */ static int fn_1ItSg_evaluate(const gs_function_t * pfn_common, const float *in, float *out) { const gs_function_1ItSg_t *const pfn = (const gs_function_1ItSg_t *)pfn_common; float arg = in[0], b0, b1, e0, encoded; int k = pfn->params.k; int i; if (arg < pfn->params.Domain[0]) { arg = pfn->params.Domain[0]; i = 0; } else if (arg > pfn->params.Domain[1]) { arg = pfn->params.Domain[1]; i = k - 1; } else { for (i = 0; i < k - 1; ++i) if (arg <= pfn->params.Bounds[i]) break; } b0 = (i == 0 ? pfn->params.Domain[0] : pfn->params.Bounds[i - 1]); b1 = (i == k - 1 ? pfn->params.Domain[1] : pfn->params.Bounds[i]); e0 = pfn->params.Encode[2 * i]; if (b1 == b0) encoded = e0; else encoded = (arg - b0) * (pfn->params.Encode[2 * i + 1] - e0) / (b1 - b0) + e0; if_debug3('~', "[~]1ItSg %g in %d => %g\n", arg, i, encoded); return gs_function_evaluate(pfn->params.Functions[i], &encoded, out); } /* Test whether a 1-Input Stitching function is monotonic. */ static int fn_1ItSg_is_monotonic(const gs_function_t * pfn_common, const float *lower, const float *upper, uint *mask) { const gs_function_1ItSg_t *const pfn = (const gs_function_1ItSg_t *)pfn_common; float v0 = lower[0], v1 = upper[0]; float d0 = pfn->params.Domain[0], d1 = pfn->params.Domain[1]; int k = pfn->params.k; int i; *mask = 0; /* If the upper and lower parametric values are the same then this is a point * and so is monotonic. */ if (v0 == v1) return 1; if (v0 > v1) { v0 = v1; v1 = lower[0]; } if (v0 > d1 || v1 < d0) return_error(gs_error_rangecheck); if (v0 < d0) v0 = d0; if (v1 > d1) v1 = d1; for (i = 0; i < pfn->params.k; ++i) { float b0 = (i == 0 ? d0 : pfn->params.Bounds[i - 1]); float b1 = (i == k - 1 ? d1 : pfn->params.Bounds[i]); const float bsmall = (float)1e-6 * (b1 - b0); float esmall; float e0, e1; float w0, w1; float vv0, vv1; float vb0, vb1; if (v0 >= b1 - bsmall) continue; /* Ignore a small noise */ vv0 = max(b0, v0); /* make sure we promote *both* values, in case v0 was within the * noise threshold above. */ vv1 = max(b0, v1); if (vv1 > b1 && v1 < b1 + bsmall) vv1 = b1; /* Ignore a small noise */ if (vv0 == vv1) return 1; if (vv0 < b1 && vv1 > b1) { *mask = 1; return 0; /* Consider stitches as monotony breaks. */ } e0 = pfn->params.Encode[2 * i]; e1 = pfn->params.Encode[2 * i + 1]; esmall = (float)1e-6 * any_abs(e1 - e0); vb0 = (float)max(vv0, b0); vb1 = (float)min(vv1, b1); if (b1 == b0) return 1; /* function is monotonous in a point */ w0 = (float)(vb0 - b0) * (e1 - e0) / (b1 - b0) + e0; w1 = (float)(vb1 - b0) * (e1 - e0) / (b1 - b0) + e0; /* Note that w0 > w1 is now possible if e0 > e1. */ if (e0 > e1) { if (w0 > e0 && w0 - esmall <= e0) w0 = e0; /* Suppress a small noise */ if (w1 < e1 && w1 + esmall >= e1) w1 = e1; /* Suppress a small noise */ } else { if (w0 < e0 && w0 + esmall >= e0) w0 = e0; /* Suppress a small noise */ if (w1 > e1 && w1 - esmall <= e1) w1 = e1; /* Suppress a small noise */ } if (w0 > w1) return gs_function_is_monotonic(pfn->params.Functions[i], &w1, &w0, mask); else return gs_function_is_monotonic(pfn->params.Functions[i], &w0, &w1, mask); } /* v0 is equal to the range end. */ *mask = 0; return 1; } /* Return 1-Input Stitching function information. */ static void fn_1ItSg_get_info(const gs_function_t *pfn_common, gs_function_info_t *pfi) { const gs_function_1ItSg_t *const pfn = (const gs_function_1ItSg_t *)pfn_common; gs_function_get_info_default(pfn_common, pfi); pfi->Functions = pfn->params.Functions; pfi->num_Functions = pfn->params.k; } /* Write 1-Input Stitching function parameters on a parameter list. */ static int fn_1ItSg_get_params(const gs_function_t *pfn_common, gs_param_list *plist) { const gs_function_1ItSg_t *const pfn = (const gs_function_1ItSg_t *)pfn_common; int ecode = fn_common_get_params(pfn_common, plist); int code; if ((code = param_write_float_values(plist, "Bounds", pfn->params.Bounds, pfn->params.k - 1, false)) < 0) ecode = code; if ((code = param_write_float_values(plist, "Encode", pfn->params.Encode, 2 * pfn->params.k, false)) < 0) ecode = code; return ecode; } /* Make a scaled copy of a 1-Input Stitching function. */ static int fn_1ItSg_make_scaled(const gs_function_1ItSg_t *pfn, gs_function_1ItSg_t **ppsfn, const gs_range_t *pranges, gs_memory_t *mem) { gs_function_1ItSg_t *psfn = gs_alloc_struct(mem, gs_function_1ItSg_t, &st_function_1ItSg, "fn_1ItSg_make_scaled"); int code; if (psfn == 0) return_error(gs_error_VMerror); psfn->params = pfn->params; psfn->params.Functions = 0; /* in case of failure */ psfn->params.Bounds = fn_copy_values(pfn->params.Bounds, pfn->params.k - 1, sizeof(float), mem); psfn->params.Encode = fn_copy_values(pfn->params.Encode, 2 * pfn->params.k, sizeof(float), mem); if ((code = (psfn->params.Bounds == 0 || psfn->params.Encode == 0 ? gs_note_error(gs_error_VMerror) : 0)) < 0 || (code = fn_common_scale((gs_function_t *)psfn, (const gs_function_t *)pfn, pranges, mem)) < 0 || (code = fn_scale_functions((gs_function_t ***)&psfn->params.Functions, pfn->params.Functions, pfn->params.n, pranges, false, mem)) < 0) { gs_function_free((gs_function_t *)psfn, true, mem); return code; } *ppsfn = psfn; return 0; } /* Free the parameters of a 1-Input Stitching function. */ void gs_function_1ItSg_free_params(gs_function_1ItSg_params_t * params, gs_memory_t * mem) { gs_free_const_object(mem, params->Encode, "Encode"); params->Encode = NULL; gs_free_const_object(mem, params->Bounds, "Bounds"); params->Bounds = NULL; fn_free_functions(params->Functions, params->k, mem); params->Functions = NULL; fn_common_free_params((gs_function_params_t *) params, mem); } /* Serialize. */ static int gs_function_1ItSg_serialize(const gs_function_t * pfn, stream *s) { uint n; const gs_function_1ItSg_params_t * p = (const gs_function_1ItSg_params_t *)&pfn->params; int code = fn_common_serialize(pfn, s); int k; if (code < 0) return code; code = sputs(s, (const byte *)&p->k, sizeof(p->k), &n); if (code < 0) return code; for (k = 0; k < p->k && code >= 0; k++) code = gs_function_serialize(p->Functions[k], s); if (code < 0) return code; code = sputs(s, (const byte *)&p->Bounds[0], sizeof(p->Bounds[0]) * (p->k - 1), &n); if (code < 0) return code; return sputs(s, (const byte *)&p->Encode[0], sizeof(p->Encode[0]) * (p->k * 2), &n); } /* Allocate and initialize a 1-Input Stitching function. */ int gs_function_1ItSg_init(gs_function_t ** ppfn, const gs_function_1ItSg_params_t * params, gs_memory_t * mem) { static const gs_function_head_t function_1ItSg_head = { function_type_1InputStitching, { (fn_evaluate_proc_t) fn_1ItSg_evaluate, (fn_is_monotonic_proc_t) fn_1ItSg_is_monotonic, (fn_get_info_proc_t) fn_1ItSg_get_info, (fn_get_params_proc_t) fn_1ItSg_get_params, (fn_make_scaled_proc_t) fn_1ItSg_make_scaled, (fn_free_params_proc_t) gs_function_1ItSg_free_params, fn_common_free, (fn_serialize_proc_t) gs_function_1ItSg_serialize, } }; int n = (params->Range == 0 ? 0 : params->n); float prev = params->Domain[0]; int code, i; *ppfn = 0; /* in case of error */ for (i = 0; i < params->k; ++i) { const gs_function_t *psubfn = params->Functions[i]; if (psubfn->params.m != 1) return_error(gs_error_rangecheck); if (n == 0) n = psubfn->params.n; else if (psubfn->params.n != n) return_error(gs_error_rangecheck); /* There are only k - 1 Bounds, not k. */ if (i < params->k - 1) { if (params->Bounds[i] < prev) return_error(gs_error_rangecheck); prev = params->Bounds[i]; } } if (params->Domain[1] < prev) return_error(gs_error_rangecheck); code = fn_check_mnDR((const gs_function_params_t *)params, 1, n); if(code < 0) return code; else { gs_function_1ItSg_t *pfn = gs_alloc_struct(mem, gs_function_1ItSg_t, &st_function_1ItSg, "gs_function_1ItSg_init"); if (pfn == 0) return_error(gs_error_VMerror); pfn->params = *params; pfn->params.m = 1; pfn->params.n = n; pfn->head = function_1ItSg_head; *ppfn = (gs_function_t *) pfn; } return 0; } /* ---------------- Arrayed Output functions ---------------- */ typedef struct gs_function_AdOt_s { gs_function_head_t head; gs_function_AdOt_params_t params; } gs_function_AdOt_t; private_st_function_AdOt(); /* Evaluate an Arrayed Output function. */ static int fn_AdOt_evaluate(const gs_function_t *pfn_common, const float *in0, float *out) { const gs_function_AdOt_t *const pfn = (const gs_function_AdOt_t *)pfn_common; const float *in = in0; #define MAX_ADOT_IN 16 float in_buf[MAX_ADOT_IN]; int i; /* * We have to take special care to handle the case where in and out * overlap. For the moment, handle it only for a limited number of * input values. */ if (in <= out + (pfn->params.n - 1) && out <= in + (pfn->params.m - 1)) { if (pfn->params.m > MAX_ADOT_IN) return_error(gs_error_rangecheck); memcpy(in_buf, in, pfn->params.m * sizeof(*in)); in = in_buf; } for (i = 0; i < pfn->params.n; ++i) { int code = gs_function_evaluate(pfn->params.Functions[i], in, out + i); if (code < 0) return code; } return 0; #undef MAX_ADOT_IN } /* Test whether an Arrayed Output function is monotonic. */ static int fn_AdOt_is_monotonic(const gs_function_t * pfn_common, const float *lower, const float *upper, uint *mask) { const gs_function_AdOt_t *const pfn = (const gs_function_AdOt_t *)pfn_common; int i; for (i = 0; i < pfn->params.n; ++i) { int code = gs_function_is_monotonic(pfn->params.Functions[i], lower, upper, mask); if (code <= 0) return code; } return 1; } /* Return Arrayed Output function information. */ static void fn_AdOt_get_info(const gs_function_t *pfn_common, gs_function_info_t *pfi) { const gs_function_AdOt_t *const pfn = (const gs_function_AdOt_t *)pfn_common; gs_function_get_info_default(pfn_common, pfi); pfi->Functions = pfn->params.Functions; pfi->num_Functions = pfn->params.n; } /* Make a scaled copy of an Arrayed Output function. */ static int fn_AdOt_make_scaled(const gs_function_AdOt_t *pfn, gs_function_AdOt_t **ppsfn, const gs_range_t *pranges, gs_memory_t *mem) { gs_function_AdOt_t *psfn = gs_alloc_struct(mem, gs_function_AdOt_t, &st_function_AdOt, "fn_AdOt_make_scaled"); int code; if (psfn == 0) return_error(gs_error_VMerror); psfn->params = pfn->params; psfn->params.Functions = 0; /* in case of failure */ if ((code = fn_common_scale((gs_function_t *)psfn, (const gs_function_t *)pfn, pranges, mem)) < 0 || (code = fn_scale_functions((gs_function_t ***)&psfn->params.Functions, pfn->params.Functions, pfn->params.n, pranges, true, mem)) < 0) { gs_function_free((gs_function_t *)psfn, true, mem); return code; } *ppsfn = psfn; return 0; } /* Free the parameters of an Arrayed Output function. */ void gs_function_AdOt_free_params(gs_function_AdOt_params_t * params, gs_memory_t * mem) { fn_free_functions(params->Functions, params->n, mem); params->Functions = NULL; fn_common_free_params((gs_function_params_t *) params, mem); } /* Serialize. */ static int gs_function_AdOt_serialize(const gs_function_t * pfn, stream *s) { const gs_function_AdOt_params_t * p = (const gs_function_AdOt_params_t *)&pfn->params; int code = fn_common_serialize(pfn, s); int k; if (code < 0) return code; for (k = 0; k < p->n && code >= 0; k++) code = gs_function_serialize(p->Functions[k], s); return code; } /* Allocate and initialize an Arrayed Output function. */ int gs_function_AdOt_init(gs_function_t ** ppfn, const gs_function_AdOt_params_t * params, gs_memory_t * mem) { static const gs_function_head_t function_AdOt_head = { function_type_ArrayedOutput, { (fn_evaluate_proc_t) fn_AdOt_evaluate, (fn_is_monotonic_proc_t) fn_AdOt_is_monotonic, (fn_get_info_proc_t) fn_AdOt_get_info, fn_common_get_params, /****** WHAT TO DO ABOUT THIS? ******/ (fn_make_scaled_proc_t) fn_AdOt_make_scaled, (fn_free_params_proc_t) gs_function_AdOt_free_params, fn_common_free, (fn_serialize_proc_t) gs_function_AdOt_serialize, } }; int m = params->m, n = params->n; *ppfn = 0; /* in case of error */ if (m <= 0 || n <= 0) return_error(gs_error_rangecheck); { gs_function_AdOt_t *pfn = gs_alloc_struct(mem, gs_function_AdOt_t, &st_function_AdOt, "gs_function_AdOt_init"); float *domain = (float *) gs_alloc_byte_array(mem, 2 * m, sizeof(float), "gs_function_AdOt_init(Domain)"); int i, j; if (pfn == 0) return_error(gs_error_VMerror); pfn->params = *params; pfn->params.Domain = domain; pfn->params.Range = 0; pfn->head = function_AdOt_head; if (domain == 0) { gs_function_free((gs_function_t *)pfn, true, mem); return_error(gs_error_VMerror); } /* * We compute the Domain as the intersection of the Domains of * the individual subfunctions. This isn't quite right: some * subfunction might actually make use of a larger domain of * input values. However, the only place that Arrayed Output * functions are used is in Shading and similar dictionaries, * where the input values are clamped to the intersection of * the individual Domains anyway. */ memcpy(domain, params->Functions[0]->params.Domain, 2 * sizeof(float) * m); for (i = 1; i < n; ++i) { const float *dom = params->Functions[i]->params.Domain; for (j = 0; j < 2 * m; j += 2, dom += 2) { domain[j] = max(domain[j], dom[0]); domain[j + 1] = min(domain[j + 1], dom[1]); } } *ppfn = (gs_function_t *) pfn; } return 0; }