/* Copyright (C) 2001-2021 Artifex Software, Inc. All Rights Reserved. This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license and may not be copied, modified or distributed except as expressly authorized under the terms of the license contained in the file LICENSE in this distribution. Refer to licensing information at http://www.artifex.com or contact Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato, CA 94945, U.S.A., +1(415)492-9861, for further information. */ /* Client interface for memory allocation */ /* * The allocator knows about two basic kinds of memory: objects, which are * aligned and cannot have pointers to their interior, and strings, which * are not aligned and which can have interior references. * * Note: OBJECTS ARE NOT GUARANTEED to be aligned any more strictly than * required by the hardware, regardless of the value of obj_align_mod. In * other words, whether ALIGNMENT_MOD(ptr, obj_align_mod) will be zero * depends on the alignment provided by the underlying allocator. * Most systems ensure this, but Microsoft VC 6 in particular does not. * See gsmemraw.h for more information about this. * * The standard allocator is designed to interface to a garbage collector, * although it does not include or call one. The allocator API recognizes * that the garbage collector may move objects, relocating pointers to them; * the API provides for allocating both movable (the default) and immovable * objects. Clients must not attempt to resize immovable objects, and must * not create references to substrings of immovable strings. */ #ifndef gsmemory_INCLUDED # define gsmemory_INCLUDED #include "std.h" #include "gstypes.h" /* for gs_bytestring */ #include "gslibctx.h" /* Define the opaque type for a structure descriptor. */ typedef struct gs_memory_struct_type_s gs_memory_struct_type_t; typedef const gs_memory_struct_type_t *gs_memory_type_ptr_t; /* Define the opaque type for a pointer type. */ typedef struct gs_ptr_procs_s gs_ptr_procs_t; typedef const gs_ptr_procs_t *gs_ptr_type_t; /* Define the opaque type for a GC root. */ typedef struct gs_gc_root_s gs_gc_root_t; /* Accessors for structure types. */ typedef client_name_t struct_name_t; /* Get the size of a structure from the descriptor. */ uint gs_struct_type_size(gs_memory_type_ptr_t); /* Get the name of a structure from the descriptor. */ struct_name_t gs_struct_type_name(gs_memory_type_ptr_t); #define gs_struct_type_name_string(styp)\ ((const char *)gs_struct_type_name(styp)) /* * Define the structure for reporting memory manager statistics. */ typedef struct gs_memory_status_s { /* * "Allocated" space is the total amount of space acquired from * the parent of the memory manager. It includes space used for * allocated data, space available for allocation, and overhead. */ size_t allocated; /* * "Used" space is the amount of space used by allocated data * plus overhead. */ size_t used; size_t max_used; /* used when wrapping if underlying allocator must be thread safe */ bool is_thread_safe; } gs_memory_status_t; /* * Allocate bytes. The bytes are always aligned maximally * if the processor requires alignment. * * Note that the object memory level can allocate bytes as * either movable or immovable: raw memory blocks are * always immovable. */ #define gs_memory_t_proc_alloc_bytes(proc, mem_t)\ byte *proc(mem_t *mem, size_t nbytes, client_name_t cname) #define gs_alloc_bytes_immovable(mem, nbytes, cname)\ ((mem)->procs.alloc_bytes_immovable(mem, nbytes, cname)) /* * Resize an object to a new number of elements. At the raw * memory level, the "element" is a byte; for object memory * (gsmemory.h), the object may be an an array of either * bytes or structures. The new size may be larger than, * the same as, or smaller than the old. If the new size is * the same as the old, resize_object returns the same * object; otherwise, it preserves the first min(old_size, * new_size) bytes of the object's contents. */ #define gs_memory_t_proc_resize_object(proc, mem_t)\ void *proc(mem_t *mem, void *obj, size_t new_num_elements,\ client_name_t cname) #define gs_resize_object(mem, obj, newn, cname)\ ((mem)->procs.resize_object(mem, obj, newn, cname)) /* * Free an object (at the object memory level, this includes * everything except strings). Note: data == 0 must be * allowed, and must be a no-op. */ #define gs_memory_t_proc_free_object(proc, mem_t)\ void proc(mem_t *mem, void *data, client_name_t cname) #define gs_free_object(mem, data, cname)\ do { if (mem != NULL) {((mem)->procs.free_object(mem, data, cname));} } while (0) /* * Report status (assigned, used). */ #define gs_memory_t_proc_status(proc, mem_t)\ void proc(mem_t *mem, gs_memory_status_t *status) #define gs_memory_status(mem, pst)\ ((mem)->procs.status(mem, pst)) /* * Return the stable allocator for this allocator. The * stable allocator allocates from the same heap and in * the same VM space, but is not subject to save and restore. * (It is the client's responsibility to avoid creating * dangling pointers.) * * Note that the stable allocator may be the same allocator * as this one. */ #define gs_memory_t_proc_stable(proc, mem_t)\ mem_t *proc(mem_t *mem) #define gs_memory_stable(mem)\ ((mem)->procs.stable(mem)) /* * Free one or more of: data memory acquired by the allocator * (FREE_ALL_DATA), overhead structures other than the * allocator itself (FREE_ALL_STRUCTURES), and the allocator * itself (FREE_ALL_ALLOCATOR). Note that this requires * allocators to keep track of all the memory they have ever * acquired, and where they acquired it. Note that this * operation propagates to the stable allocator (if * different). */ #define FREE_ALL_DATA 1 #define FREE_ALL_STRUCTURES 2 #define FREE_ALL_ALLOCATOR 4 #define FREE_ALL_EVERYTHING\ (FREE_ALL_DATA | FREE_ALL_STRUCTURES | FREE_ALL_ALLOCATOR) #define gs_memory_t_proc_free_all(proc, mem_t)\ void proc(mem_t *mem, uint free_mask, client_name_t cname) #define gs_memory_free_all(mem, free_mask, cname)\ ((mem)->procs.free_all(mem, free_mask, cname)) /* Backward compatibility */ #define gs_free_all(mem)\ gs_memory_free_all(mem, FREE_ALL_DATA, "(free_all)") /* * Consolidate free space. This may be used as part of (or * as an alternative to) garbage collection, or before * giving up on an attempt to allocate. */ #define gs_memory_t_proc_consolidate_free(proc, mem_t)\ void proc(mem_t *mem) #define gs_consolidate_free(mem)\ ((mem)->procs.consolidate_free(mem)) /* Define the members of the procedure structure. */ #define gs_raw_memory_procs(mem_t)\ gs_memory_t_proc_alloc_bytes((*alloc_bytes_immovable), mem_t);\ gs_memory_t_proc_resize_object((*resize_object), mem_t);\ gs_memory_t_proc_free_object((*free_object), mem_t);\ gs_memory_t_proc_stable((*stable), mem_t);\ gs_memory_t_proc_status((*status), mem_t);\ gs_memory_t_proc_free_all((*free_all), mem_t);\ gs_memory_t_proc_consolidate_free((*consolidate_free), mem_t) /* * Define the memory manager procedural interface. */ typedef struct gs_memory_procs_s { gs_raw_memory_procs(gs_memory_t); /* Redefine inherited procedures with the new allocator type. */ #define gs_memory_proc_alloc_bytes(proc)\ gs_memory_t_proc_alloc_bytes(proc, gs_memory_t) #define gs_memory_proc_resize_object(proc)\ gs_memory_t_proc_resize_object(proc, gs_memory_t) #define gs_memory_proc_free_object(proc)\ gs_memory_t_proc_free_object(proc, gs_memory_t) #define gs_memory_proc_stable(proc)\ gs_memory_t_proc_stable(proc, gs_memory_t) #define gs_memory_proc_status(proc)\ gs_memory_t_proc_status(proc, gs_memory_t) #define gs_memory_proc_free_all(proc)\ gs_memory_t_proc_free_all(proc, gs_memory_t) #define gs_memory_proc_consolidate_free(proc)\ gs_memory_t_proc_consolidate_free(proc, gs_memory_t) /* * Allocate possibly movable bytes. (We inherit allocating immovable * bytes from the raw memory allocator.) */ #define gs_alloc_bytes(mem, nbytes, cname)\ (*(mem)->procs.alloc_bytes)(mem, nbytes, cname) gs_memory_proc_alloc_bytes((*alloc_bytes)); /* * Allocate a structure. */ #define gs_memory_proc_alloc_struct(proc)\ void *proc(gs_memory_t *mem, gs_memory_type_ptr_t pstype,\ client_name_t cname) #define gs_alloc_struct(mem, typ, pstype, cname)\ (typ *)(*(mem)->procs.alloc_struct)(mem, pstype, cname) gs_memory_proc_alloc_struct((*alloc_struct)); #define gs_alloc_struct_immovable(mem, typ, pstype, cname)\ (typ *)(*(mem)->procs.alloc_struct_immovable)(mem, pstype, cname) gs_memory_proc_alloc_struct((*alloc_struct_immovable)); /* * Allocate an array of bytes. */ #define gs_memory_proc_alloc_byte_array(proc)\ byte *proc(gs_memory_t *mem, size_t num_elements, size_t elt_size,\ client_name_t cname) #define gs_alloc_byte_array(mem, nelts, esize, cname)\ (*(mem)->procs.alloc_byte_array)(mem, nelts, esize, cname) gs_memory_proc_alloc_byte_array((*alloc_byte_array)); #define gs_alloc_byte_array_immovable(mem, nelts, esize, cname)\ (*(mem)->procs.alloc_byte_array_immovable)(mem, nelts, esize, cname) gs_memory_proc_alloc_byte_array((*alloc_byte_array_immovable)); /* * Allocate an array of structures. */ #define gs_memory_proc_alloc_struct_array(proc)\ void *proc(gs_memory_t *mem, size_t num_elements,\ gs_memory_type_ptr_t pstype, client_name_t cname) #define gs_alloc_struct_array(mem, nelts, typ, pstype, cname)\ (typ *)(*(mem)->procs.alloc_struct_array)(mem, nelts, pstype, cname) gs_memory_proc_alloc_struct_array((*alloc_struct_array)); #define gs_alloc_struct_array_immovable(mem, nelts, typ, pstype, cname)\ (typ *)(*(mem)->procs.alloc_struct_array_immovable)(mem, nelts, pstype, cname) gs_memory_proc_alloc_struct_array((*alloc_struct_array_immovable)); /* * Get the size of an object (anything except a string). */ #define gs_memory_proc_object_size(proc)\ size_t proc(gs_memory_t *mem, const void *obj) #define gs_object_size(mem, obj)\ (*(mem)->procs.object_size)(mem, obj) gs_memory_proc_object_size((*object_size)); /* * Get the type of an object (anything except a string). * The value returned for byte objects is useful only for * printing. */ #define gs_memory_proc_object_type(proc)\ gs_memory_type_ptr_t proc(const gs_memory_t *mem, const void *obj) #define gs_object_type(mem, obj)\ (*(mem)->procs.object_type)(mem, obj) gs_memory_proc_object_type((*object_type)); /* * Allocate a string (unaligned bytes). */ #define gs_memory_proc_alloc_string(proc)\ byte *proc(gs_memory_t *mem, size_t nbytes, client_name_t cname) #define gs_alloc_string(mem, nbytes, cname)\ (*(mem)->procs.alloc_string)(mem, nbytes, cname) gs_memory_proc_alloc_string((*alloc_string)); #define gs_alloc_string_immovable(mem, nbytes, cname)\ (*(mem)->procs.alloc_string_immovable)(mem, nbytes, cname) gs_memory_proc_alloc_string((*alloc_string_immovable)); /* * Resize a string. The specification is the same as resize_object * except that the element size is always a byte. */ #define gs_memory_proc_resize_string(proc)\ byte *proc(gs_memory_t *mem, byte *data, size_t old_num, size_t new_num,\ client_name_t cname) #define gs_resize_string(mem, data, oldn, newn, cname)\ (*(mem)->procs.resize_string)(mem, data, oldn, newn, cname) gs_memory_proc_resize_string((*resize_string)); /* * Free a string. */ #define gs_memory_proc_free_string(proc)\ void proc(gs_memory_t *mem, byte *data, size_t nbytes,\ client_name_t cname) #define gs_free_string(mem, data, nbytes, cname)\ (*(mem)->procs.free_string)(mem, data, nbytes, cname) gs_memory_proc_free_string((*free_string)); /* Register a root for the garbage collector. We have three scenarios to deal with: 1) rpp is NULL: the root will remain internal to the memory manager. 2) rpp is valid, but *rpp is NULL: We'll allocate the root, and return a pointer to it (via rpp). 3) rpp is valid, and *rpp is valid: The caller has supplied the root, so use it. Scenario 1 is a root that will last until the memory manager is shutdown. 2 & 3 allow the root to be unregistered by the caller. */ #define gs_memory_proc_register_root(proc)\ int proc(gs_memory_t *mem, gs_gc_root_t **root, gs_ptr_type_t ptype,\ void **pp, client_name_t cname) #define gs_register_root(mem, root, ptype, pp, cname)\ (*(mem)->procs.register_root)(mem, root, ptype, pp, cname) gs_memory_proc_register_root((*register_root)); /* * Unregister a root. The root object itself will be freed iff * it was allocated by gs_register_root. */ #define gs_memory_proc_unregister_root(proc)\ void proc(gs_memory_t *mem, gs_gc_root_t *root, client_name_t cname) #define gs_unregister_root(mem, root, cname)\ (*(mem)->procs.unregister_root)(mem, root, cname) gs_memory_proc_unregister_root((*unregister_root)); /* * Enable or disable the freeing operations: when disabled, * these operations return normally but do nothing. The * garbage collector and the PostScript interpreter * 'restore' operator need to temporarily disable the * freeing functions of (an) allocator(s) while running * finalization procedures. */ #define gs_memory_proc_enable_free(proc)\ void proc(gs_memory_t *mem, bool enable) #define gs_enable_free(mem, enable)\ (*(mem)->procs.enable_free)(mem, enable) gs_memory_proc_enable_free((*enable_free)); #define gs_memory_proc_set_object_type(proc)\ void proc(gs_memory_t *mem, void *data, gs_memory_type_ptr_t type) #define gs_set_object_type(mem, data, type)\ (*(mem)->procs.set_object_type)(mem, data, type) gs_memory_proc_set_object_type((*set_object_type)); #define gs_memory_proc_defer_frees(proc)\ void proc(gs_memory_t *mem, int defer) #define gs_defer_frees(mem, defer)\ (*(mem)->procs.defer_frees)(mem, defer) gs_memory_proc_defer_frees((*defer_frees)); #define GS_MEMORY_CAN_DEFER_FREES } gs_memory_procs_t; /* * Define versions of the freeing procedures that are applicable even if the * pointer is declared as const T *. These are intended for use where a * structure contains a pointer member whose referent is declared as const * because it is const for all ordinary clients. */ void gs_free_const_object(gs_memory_t *mem, const void *data, client_name_t cname); void gs_free_const_string(gs_memory_t *mem, const byte *data, size_t nbytes, client_name_t cname); /* * Free a [const] bytestring. Note that this is *not* a member procedure of * the allocator: it calls the free_object or free_string procedure. */ void gs_free_bytestring(gs_memory_t *mem, gs_bytestring *pbs, client_name_t cname); void gs_free_const_bytestring(gs_memory_t *mem, gs_const_bytestring *pbs, client_name_t cname); /* * Either allocate (if obj == 0) or resize (if obj != 0) a structure array. * If obj != 0, pstype is used only for checking (in DEBUG configurations). */ void *gs_resize_struct_array(gs_memory_t *mem, void *obj, size_t num_elements, gs_memory_type_ptr_t pstype, client_name_t cname); /* Register a structure root. This just calls gs_register_root. */ int gs_register_struct_root(gs_memory_t *mem, gs_gc_root_t **root, void **pp, client_name_t cname); /* Define no-op freeing procedures for use by enable_free. */ gs_memory_proc_free_object(gs_ignore_free_object); gs_memory_proc_free_string(gs_ignore_free_string); /* Define a no-op consolidation procedure. */ gs_memory_proc_consolidate_free(gs_ignore_consolidate_free); /* * Allocate a structure using a "raw memory" allocator. Note that this does * not retain the identity of the structure. Note also that it returns a * void *, and does not take the type of the returned pointer as a * parameter. */ void *gs_raw_alloc_struct_immovable(gs_memory_t * rmem, gs_memory_type_ptr_t pstype, client_name_t cname); /* * Define an abstract allocator instance. * Subclasses may have state as well * * stable_memory: no save or restore, maybe gc-ed * non-gc allocators stable_memory == this * * gs_lib_ctx: pointer to a library context * * non_gc_memory: a garabge collecting allocator requires a "parent" who doesn't gc * non-gc allocators non_gc_memory == this * * thread_safe_memory: use with multiple threads must provide for a thread safe allocator * that will most likely use a monitor (mutex) to serialize actions. */ #define gs_memory_common\ gs_memory_t *stable_memory;\ gs_memory_procs_t procs;\ gs_lib_ctx_t *gs_lib_ctx;\ gs_memory_t *non_gc_memory;\ gs_memory_t *thread_safe_memory struct gs_memory_s { gs_memory_common; }; #endif /* gsmemory_INCLUDED */