/* Copyright (C) 2001-2021 Artifex Software, Inc. All Rights Reserved. This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license and may not be copied, modified or distributed except as expressly authorized under the terms of the license contained in the file LICENSE in this distribution. Refer to licensing information at http://www.artifex.com or contact Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato, CA 94945, U.S.A., +1(415)492-9861, for further information. */ /* Rendering for non-mesh shadings */ #include "math_.h" #include "memory_.h" #include "gx.h" #include "gserrors.h" #include "gsmatrix.h" /* for gscoord.h */ #include "gscoord.h" #include "gspath.h" #include "gsptype2.h" #include "gxcspace.h" #include "gxdcolor.h" #include "gxfarith.h" #include "gxfixed.h" #include "gxgstate.h" #include "gxpath.h" #include "gxshade.h" #include "gxdevcli.h" #include "gxshade4.h" #include "gsicc_cache.h" /* ---------------- Function-based shading ---------------- */ typedef struct Fb_frame_s { /* A rudiment of old code. */ gs_rect region; gs_client_color cc[4]; /* colors at 4 corners */ int state; } Fb_frame_t; typedef struct Fb_fill_state_s { shading_fill_state_common; const gs_shading_Fb_t *psh; gs_matrix_fixed ptm; /* parameter space -> device space */ Fb_frame_t frame; } Fb_fill_state_t; /****** NEED GC DESCRIPTOR ******/ static inline void make_other_poles(patch_curve_t curve[4]) { int i, j; for (i = 0; i < 4; i++) { j = (i + 1) % 4; curve[i].control[0].x = (curve[i].vertex.p.x * 2 + curve[j].vertex.p.x) / 3; curve[i].control[0].y = (curve[i].vertex.p.y * 2 + curve[j].vertex.p.y) / 3; curve[i].control[1].x = (curve[i].vertex.p.x + curve[j].vertex.p.x * 2) / 3; curve[i].control[1].y = (curve[i].vertex.p.y + curve[j].vertex.p.y * 2) / 3; curve[i].straight = true; } } /* Transform a point with a fixed-point result. */ static void gs_point_transform2fixed_clamped(const gs_matrix_fixed * pmat, double x, double y, gs_fixed_point * ppt) { gs_point fpt; gs_point_transform(x, y, (const gs_matrix *)pmat, &fpt); ppt->x = clamp_coord(fpt.x); ppt->y = clamp_coord(fpt.y); } static int Fb_fill_region(Fb_fill_state_t * pfs, const gs_fixed_rect *rect) { patch_fill_state_t pfs1; patch_curve_t curve[4]; Fb_frame_t * fp = &pfs->frame; int code; memcpy(&pfs1, (shading_fill_state_t *)pfs, sizeof(shading_fill_state_t)); pfs1.Function = pfs->psh->params.Function; code = init_patch_fill_state(&pfs1); if (code < 0) return code; pfs1.maybe_self_intersecting = false; pfs1.n_color_args = 2; pfs1.rect = *rect; gs_point_transform2fixed(&pfs->ptm, fp->region.p.x, fp->region.p.y, &curve[0].vertex.p); gs_point_transform2fixed(&pfs->ptm, fp->region.q.x, fp->region.p.y, &curve[1].vertex.p); gs_point_transform2fixed(&pfs->ptm, fp->region.q.x, fp->region.q.y, &curve[2].vertex.p); gs_point_transform2fixed(&pfs->ptm, fp->region.p.x, fp->region.q.y, &curve[3].vertex.p); make_other_poles(curve); curve[0].vertex.cc[0] = fp->region.p.x; curve[0].vertex.cc[1] = fp->region.p.y; curve[1].vertex.cc[0] = fp->region.q.x; curve[1].vertex.cc[1] = fp->region.p.y; curve[2].vertex.cc[0] = fp->region.q.x; curve[2].vertex.cc[1] = fp->region.q.y; curve[3].vertex.cc[0] = fp->region.p.x; curve[3].vertex.cc[1] = fp->region.q.y; code = patch_fill(&pfs1, curve, NULL, NULL); if (term_patch_fill_state(&pfs1)) return_error(gs_error_unregistered); /* Must not happen. */ return code; } int gs_shading_Fb_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect, const gs_fixed_rect * rect_clip, gx_device * dev, gs_gstate * pgs) { const gs_shading_Fb_t * const psh = (const gs_shading_Fb_t *)psh0; gs_matrix save_ctm; int xi, yi, code; float x[2], y[2]; Fb_fill_state_t state; code = shade_init_fill_state((shading_fill_state_t *) & state, psh0, dev, pgs); if (code < 0) return code; state.psh = psh; /****** HACK FOR FIXED-POINT MATRIX MULTIPLY ******/ gs_currentmatrix((gs_gstate *) pgs, &save_ctm); gs_concat((gs_gstate *) pgs, &psh->params.Matrix); state.ptm = pgs->ctm; gs_setmatrix((gs_gstate *) pgs, &save_ctm); /* Compute the parameter X and Y ranges. */ { gs_rect pbox; code = gs_bbox_transform_inverse(rect, &psh->params.Matrix, &pbox); if (code < 0) return code; x[0] = max(pbox.p.x, psh->params.Domain[0]); x[1] = min(pbox.q.x, psh->params.Domain[1]); y[0] = max(pbox.p.y, psh->params.Domain[2]); y[1] = min(pbox.q.y, psh->params.Domain[3]); } if (x[0] > x[1] || y[0] > y[1]) { /* The region is outside the shading area. */ if (state.icclink != NULL) gsicc_release_link(state.icclink); return 0; } for (xi = 0; xi < 2; ++xi) for (yi = 0; yi < 2; ++yi) { float v[2]; v[0] = x[xi], v[1] = y[yi]; gs_function_evaluate(psh->params.Function, v, state.frame.cc[yi * 2 + xi].paint.values); } state.frame.region.p.x = x[0]; state.frame.region.p.y = y[0]; state.frame.region.q.x = x[1]; state.frame.region.q.y = y[1]; code = Fb_fill_region(&state, rect_clip); if (state.icclink != NULL) gsicc_release_link(state.icclink); return code; } /* ---------------- Axial shading ---------------- */ typedef struct A_fill_state_s { const gs_shading_A_t *psh; gs_point delta; double length; double t0, t1; double v0, v1, u0, u1; } A_fill_state_t; /****** NEED GC DESCRIPTOR ******/ /* Note t0 and t1 vary over [0..1], not the Domain. */ static int A_fill_region(A_fill_state_t * pfs, patch_fill_state_t *pfs1) { const gs_shading_A_t * const psh = pfs->psh; double x0 = psh->params.Coords[0] + pfs->delta.x * pfs->v0; double y0 = psh->params.Coords[1] + pfs->delta.y * pfs->v0; double x1 = psh->params.Coords[0] + pfs->delta.x * pfs->v1; double y1 = psh->params.Coords[1] + pfs->delta.y * pfs->v1; double h0 = pfs->u0, h1 = pfs->u1; patch_curve_t curve[4]; int code; code = gs_point_transform2fixed(&pfs1->pgs->ctm, x0 + pfs->delta.y * h0, y0 - pfs->delta.x * h0, &curve[0].vertex.p); if (code < 0) return code; code = gs_point_transform2fixed(&pfs1->pgs->ctm, x1 + pfs->delta.y * h0, y1 - pfs->delta.x * h0, &curve[1].vertex.p); if (code < 0) return code; code = gs_point_transform2fixed(&pfs1->pgs->ctm, x1 + pfs->delta.y * h1, y1 - pfs->delta.x * h1, &curve[2].vertex.p); if (code < 0) return code; code = gs_point_transform2fixed(&pfs1->pgs->ctm, x0 + pfs->delta.y * h1, y0 - pfs->delta.x * h1, &curve[3].vertex.p); if (code < 0) return code; curve[0].vertex.cc[0] = pfs->t0; /* The element cc[1] is set to a dummy value against */ curve[1].vertex.cc[0] = pfs->t1; /* interrupts while an idle priocessing in gxshade.6.c . */ curve[2].vertex.cc[0] = pfs->t1; curve[3].vertex.cc[0] = pfs->t0; curve[0].vertex.cc[1] = 0; /* The element cc[1] is set to a dummy value against */ curve[1].vertex.cc[1] = 0; /* interrupts while an idle priocessing in gxshade.6.c . */ curve[2].vertex.cc[1] = 0; curve[3].vertex.cc[1] = 0; make_other_poles(curve); return patch_fill(pfs1, curve, NULL, NULL); } static inline int gs_shading_A_fill_rectangle_aux(const gs_shading_t * psh0, const gs_rect * rect, const gs_fixed_rect *clip_rect, gx_device * dev, gs_gstate * pgs) { const gs_shading_A_t *const psh = (const gs_shading_A_t *)psh0; gs_function_t * const pfn = psh->params.Function; gs_matrix cmat; gs_rect t_rect; A_fill_state_t state; patch_fill_state_t pfs1; float d0 = psh->params.Domain[0], d1 = psh->params.Domain[1]; float dd = d1 - d0; double t0, t1; gs_point dist; int code; state.psh = psh; code = shade_init_fill_state((shading_fill_state_t *)&pfs1, psh0, dev, pgs); if (code < 0) return code; pfs1.Function = pfn; pfs1.rect = *clip_rect; code = init_patch_fill_state(&pfs1); if (code < 0) goto fail; pfs1.maybe_self_intersecting = false; pfs1.function_arg_shift = 1; /* * Compute the parameter range. We construct a matrix in which * (0,0) corresponds to t = 0 and (0,1) corresponds to t = 1, * and use it to inverse-map the rectangle to be filled. */ cmat.tx = psh->params.Coords[0]; cmat.ty = psh->params.Coords[1]; state.delta.x = psh->params.Coords[2] - psh->params.Coords[0]; state.delta.y = psh->params.Coords[3] - psh->params.Coords[1]; cmat.yx = state.delta.x; cmat.yy = state.delta.y; cmat.xx = cmat.yy; cmat.xy = -cmat.yx; code = gs_bbox_transform_inverse(rect, &cmat, &t_rect); if (code < 0) { code = 0; /* Swallow this silently */ goto fail; } t0 = min(max(t_rect.p.y, 0), 1); t1 = max(min(t_rect.q.y, 1), 0); state.v0 = t0; state.v1 = t1; state.u0 = t_rect.p.x; state.u1 = t_rect.q.x; state.t0 = t0 * dd + d0; state.t1 = t1 * dd + d0; code = gs_distance_transform(state.delta.x, state.delta.y, &ctm_only(pgs), &dist); if (code < 0) goto fail; state.length = hypot(dist.x, dist.y); /* device space line length */ code = A_fill_region(&state, &pfs1); if (psh->params.Extend[0] && t0 > t_rect.p.y) { if (code < 0) goto fail; /* Use the general algorithm, because we need the trapping. */ state.v0 = t_rect.p.y; state.v1 = t0; state.t0 = state.t1 = t0 * dd + d0; code = A_fill_region(&state, &pfs1); } if (psh->params.Extend[1] && t1 < t_rect.q.y) { if (code < 0) goto fail; /* Use the general algorithm, because we need the trapping. */ state.v0 = t1; state.v1 = t_rect.q.y; state.t0 = state.t1 = t1 * dd + d0; code = A_fill_region(&state, &pfs1); } fail: gsicc_release_link(pfs1.icclink); if (term_patch_fill_state(&pfs1)) return_error(gs_error_unregistered); /* Must not happen. */ return code; } int gs_shading_A_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect, const gs_fixed_rect * rect_clip, gx_device * dev, gs_gstate * pgs) { return gs_shading_A_fill_rectangle_aux(psh0, rect, rect_clip, dev, pgs); } /* ---------------- Radial shading ---------------- */ /* Some notes on what I have struggled to understand about the following * function. This function renders the 'tube' given by interpolating one * circle to another. * * The first circle is at (x0, y0) with radius r0, and has 'color' t0. * The other circle is at (x1, y1) with radius r1, and has 'color' t1. * * We perform this rendering by approximating each quadrant of the 'tube' * by a tensor patch. The tensor patch is formed by taking a curve along * 1/4 of the circumference of the first circle, a straight line to the * equivalent point on the circumference of the second circle, a curve * back along the circumference of the second circle, and then a straight * line back to where we started. * * There is additional logic in this function that forms the directions of * the curves differently for different quadrants. This is done to ensure * that we always paint 'around' the tube from the back towards the front, * so we don't get unexpected regions showing though. This is explained more * below. * * The original code here examined the position change between the two * circles dx and dy. Based upon this vector it would pick which quadrant/ * tensor patch to draw first. It would draw the quadrants/tensor patches * in anticlockwise order. Presumably this was intended to be done so that * the 'top' quadrant would be drawn last. * * Unfortunately this did not always work; see bug 692513. If the quadrants * were rendered in the order 0,1,2,3, the rendering of 1 was leaving traces * on top of 0, which was unexpected. * * I have therefore altered the code slightly; rather than picking a start * quadrant and moving anticlockwise, we now draw the 'undermost' quadrant, * then the two adjacent quadrants, then the topmost quadrant. * * For the purposes of explanation, we shall label the octants as below: * * \2|1/ and Quadrants as: | * 3\|/0 Q1 | Q0 * ---+--- ----+---- * 4/|\7 Q2 | Q3 * /5|6\ | * * We find (dx,dy), the difference between the centres of the circles. * We look to see which octant this falls in. Firstly, this tells us which * quadrant of the circle we need to draw first (Octant n, starts with * Quadrant floor(n/2)). Secondly, it tells us which direction to form the * tensor patch in; we always want to draw from the side 'closest' to * dx/dy to the side further away. This ensures that we don't overwrite * pixels in the incorrect order as the patch decomposes. */ static int R_tensor_annulus(patch_fill_state_t *pfs, double x0, double y0, double r0, double t0, double x1, double y1, double r1, double t1) { double dx = x1 - x0, dy = y1 - y0; double d = hypot(dx, dy); gs_point p0, p1, pc0, pc1; int k, j, code, dirn; bool inside = 0; /* pc0 and pc1 are the centres of the respective circles. */ pc0.x = x0, pc0.y = y0; pc1.x = x1, pc1.y = y1; /* Set p0 up so it's a unit vector giving the direction of 90 degrees * to the right of the major axis as we move from p0c to p1c. */ if (r0 + d <= r1 || r1 + d <= r0) { /* One circle is inside another one. Use any subdivision, but don't depend on dx, dy, which may be too small. */ p0.x = 0, p0.y = -1, dirn = 0; /* Align stripes along radii for faster triangulation : */ inside = 1; pfs->function_arg_shift = 1; } else { /* Must generate canonic quadrangle arcs, because we approximate them with curves. */ if(dx >= 0) { if (dy >= 0) p0.x = 1, p0.y = 0, dirn = (dx >= dy ? 1 : 0); else p0.x = 0, p0.y = -1, dirn = (dx >= -dy ? 0 : 1); } else { if (dy >= 0) p0.x = 0, p0.y = 1, dirn = (-dx >= dy ? 1 : 0); else p0.x = -1, p0.y = 0, dirn = (-dx >= -dy ? 0 : 1); } pfs->function_arg_shift = 0; } /* fixme: wish: cut invisible parts off. Note : when r0 != r1 the invisible part is not a half circle. */ for (k = 0; k < 4; k++) { gs_point p[12]; patch_curve_t curve[4]; /* Set p1 to be 90 degrees anticlockwise from p0 */ p1.x = -p0.y; p1.y = p0.x; if (dirn == 0) { /* Clockwise */ make_quadrant_arc(p + 0, &pc0, &p1, &p0, r0); make_quadrant_arc(p + 6, &pc1, &p0, &p1, r1); } else { /* Anticlockwise */ make_quadrant_arc(p + 0, &pc0, &p0, &p1, r0); make_quadrant_arc(p + 6, &pc1, &p1, &p0, r1); } p[4].x = (p[3].x * 2 + p[6].x) / 3; p[4].y = (p[3].y * 2 + p[6].y) / 3; p[5].x = (p[3].x + p[6].x * 2) / 3; p[5].y = (p[3].y + p[6].y * 2) / 3; p[10].x = (p[9].x * 2 + p[0].x) / 3; p[10].y = (p[9].y * 2 + p[0].y) / 3; p[11].x = (p[9].x + p[0].x * 2) / 3; p[11].y = (p[9].y + p[0].y * 2) / 3; for (j = 0; j < 4; j++) { int jj = (j + inside) % 4; if (gs_point_transform2fixed(&pfs->pgs->ctm, p[j*3 + 0].x, p[j*3 + 0].y, &curve[jj].vertex.p) < 0) gs_point_transform2fixed_clamped(&pfs->pgs->ctm, p[j*3 + 0].x, p[j*3 + 0].y, &curve[jj].vertex.p); if (gs_point_transform2fixed(&pfs->pgs->ctm, p[j*3 + 1].x, p[j*3 + 1].y, &curve[jj].control[0]) < 0) gs_point_transform2fixed_clamped(&pfs->pgs->ctm, p[j*3 + 1].x, p[j*3 + 1].y, &curve[jj].control[0]); if (gs_point_transform2fixed(&pfs->pgs->ctm, p[j*3 + 2].x, p[j*3 + 2].y, &curve[jj].control[1]) < 0) gs_point_transform2fixed_clamped(&pfs->pgs->ctm, p[j*3 + 2].x, p[j*3 + 2].y, &curve[jj].control[1]); curve[j].straight = (((j + inside) & 1) != 0); } curve[(0 + inside) % 4].vertex.cc[0] = t0; curve[(1 + inside) % 4].vertex.cc[0] = t0; curve[(2 + inside) % 4].vertex.cc[0] = t1; curve[(3 + inside) % 4].vertex.cc[0] = t1; curve[0].vertex.cc[1] = curve[1].vertex.cc[1] = 0; /* Initialize against FPE. */ curve[2].vertex.cc[1] = curve[3].vertex.cc[1] = 0; /* Initialize against FPE. */ code = patch_fill(pfs, curve, NULL, NULL); if (code < 0) return code; /* Move p0 to be ready for the next position */ if (k == 0) { /* p0 moves clockwise */ p1 = p0; p0.x = p1.y; p0.y = -p1.x; dirn = 0; } else if (k == 1) { /* p0 flips sides */ p0.x = -p0.x; p0.y = -p0.y; dirn = 1; } else if (k == 2) { /* p0 moves anti-clockwise */ p1 = p0; p0.x = -p1.y; p0.y = p1.x; dirn = 0; } } return 0; } /* Find the control points for two points on the arc of a circle * the points must be within the same quadrant. */ static int find_arc_control_points(gs_point *from, gs_point *to, gs_point *from_control, gs_point *to_control, gs_point *centre) { double from_tan_alpha, to_tan_alpha, from_alpha, to_alpha; double half_inscribed_angle, intersect_x, intersect_y, intersect_dist; double radius = sqrt(((from->x - centre->x) * (from->x - centre->x)) + ((from->y - centre->y) * (from->y - centre->y))); double tangent_intersect_dist; double F; int quadrant; /* Quadrant 0 is upper right, numbered anti-clockwise. * If the direction of the from->to is atni-clockwise, add 4 */ if (from->x > to->x) { if (from->y > to->y) { if (to->y >= centre->y) quadrant = 1 + 4; else quadrant = 3; } else { if (to->x >= centre->x) quadrant = 0 + 4; else quadrant = 2; } } else { if (from->y > to->y) { if (from->x >= centre->x) quadrant = 0; else quadrant = 2 + 4; } else { if (from->x >= centre->x) quadrant = 3 + 4; else quadrant = 1; } } switch(quadrant) { /* quadrant 0, arc goes clockwise */ case 0: if (from->x == centre->x) { from_alpha = M_PI / 2; } else { from_tan_alpha = (from->y - centre->y) / (from->x - centre->x); from_alpha = atan(from_tan_alpha); } to_tan_alpha = (to->y - centre->y) / (to->x - centre->x); to_alpha = atan(to_tan_alpha); half_inscribed_angle = (from_alpha - to_alpha) / 2; intersect_dist = radius / cos(half_inscribed_angle); tangent_intersect_dist = tan(half_inscribed_angle) * radius; intersect_x = centre->x + cos(to_alpha + half_inscribed_angle) * intersect_dist; intersect_y = centre->y + sin(to_alpha + half_inscribed_angle) * intersect_dist; break; /* quadrant 1, arc goes clockwise */ case 1: from_tan_alpha = (from->y - centre->y) / (centre->x - from->x); from_alpha = atan(from_tan_alpha); if (to->x == centre->x) { to_alpha = M_PI / 2; } else { to_tan_alpha = (to->y - centre->y) / (centre->x - to->x); to_alpha = atan(to_tan_alpha); } half_inscribed_angle = (to_alpha - from_alpha) / 2; intersect_dist = radius / cos(half_inscribed_angle); tangent_intersect_dist = tan(half_inscribed_angle) * radius; intersect_x = centre->x - cos(from_alpha + half_inscribed_angle) * intersect_dist; intersect_y = centre->y + sin(from_alpha + half_inscribed_angle) * intersect_dist; break; /* quadrant 2, arc goes clockwise */ case 2: if (from->x == centre->x) { from_alpha = M_PI / 2; } else { from_tan_alpha = (centre->y - from->y) / (centre->x - from->x); from_alpha = atan(from_tan_alpha); } to_tan_alpha = (centre->y - to->y) / (centre->x - to->x); to_alpha = atan(to_tan_alpha); half_inscribed_angle = (to_alpha - from_alpha) / 2; intersect_dist = radius / cos(half_inscribed_angle); tangent_intersect_dist = tan(half_inscribed_angle) * radius; intersect_x = centre->x - cos(from_alpha + half_inscribed_angle) * intersect_dist; intersect_y = centre->y - sin(from_alpha + half_inscribed_angle) * intersect_dist; break; /* quadrant 3, arc goes clockwise */ case 3: from_tan_alpha = (centre->y - from->y) / (from->x - centre->x); from_alpha = atan(from_tan_alpha); if (to->x == centre->x) { to_alpha = M_PI / 2; } else { to_tan_alpha = (centre->y - to->y) / (to->x - centre->x); to_alpha = atan(to_tan_alpha); } half_inscribed_angle = (to_alpha - from_alpha) / 2; intersect_dist = radius / cos(half_inscribed_angle); tangent_intersect_dist = tan(half_inscribed_angle) * radius; intersect_x = centre->x + cos(from_alpha + half_inscribed_angle) * intersect_dist; intersect_y = centre->y - sin(from_alpha + half_inscribed_angle) * intersect_dist; break; /* quadrant 0, arc goes anti-clockwise */ case 4: from_tan_alpha = (from->y - centre->y) / (from->x - centre->x); from_alpha = atan(from_tan_alpha); if (to->y == centre->y) to_alpha = M_PI / 2; else { to_tan_alpha = (to->y - centre->y) / (to->x - centre->x); to_alpha = atan(to_tan_alpha); } half_inscribed_angle = (to_alpha - from_alpha) / 2; intersect_dist = radius / cos(half_inscribed_angle); tangent_intersect_dist = tan(half_inscribed_angle) * radius; intersect_x = centre->x + cos(from_alpha + half_inscribed_angle) * intersect_dist; intersect_y = centre->y + sin(from_alpha + half_inscribed_angle) * intersect_dist; break; /* quadrant 1, arc goes anti-clockwise */ case 5: from_tan_alpha = (centre->x - from->x) / (from->y - centre->y); from_alpha = atan(from_tan_alpha); if (to->y == centre->y) { to_alpha = M_PI / 2; } else { to_tan_alpha = (centre->x - to->x) / (to->y - centre->y); to_alpha = atan(to_tan_alpha); } half_inscribed_angle = (to_alpha - from_alpha) / 2; intersect_dist = radius / cos(half_inscribed_angle); tangent_intersect_dist = tan(half_inscribed_angle) * radius; intersect_x = centre->x - sin(from_alpha + half_inscribed_angle) * intersect_dist; intersect_y = centre->y + cos(from_alpha + half_inscribed_angle) * intersect_dist; break; /* quadrant 2, arc goes anti-clockwise */ case 6: from_tan_alpha = (from->y - centre->y) / (centre->x - from->x); from_alpha = atan(from_tan_alpha); if (to->x == centre->x) { to_alpha = M_PI / 2; } else { to_tan_alpha = (centre->y - to->y) / (centre->x - to->x); to_alpha = atan(to_tan_alpha); } half_inscribed_angle = (to_alpha - from_alpha) / 2; intersect_dist = radius / cos(half_inscribed_angle); tangent_intersect_dist = tan(half_inscribed_angle) * radius; intersect_x = centre->x - cos(from_alpha + half_inscribed_angle) * intersect_dist; intersect_y = centre->y - sin(from_alpha + half_inscribed_angle) * intersect_dist; break; /* quadrant 3, arc goes anti-clockwise */ case 7: if (from->x == centre->x) { from_alpha = M_PI / 2; } else { from_tan_alpha = (centre->y - from->y) / (from->x - centre->x); from_alpha = atan(from_tan_alpha); } to_tan_alpha = (centre->y - to->y) / (to->x - centre->x); to_alpha = atan(to_tan_alpha); half_inscribed_angle = (from_alpha - to_alpha) / 2; intersect_dist = radius / cos(half_inscribed_angle); tangent_intersect_dist = tan(half_inscribed_angle) * radius; intersect_x = centre->x + cos(to_alpha + half_inscribed_angle) * intersect_dist; intersect_y = centre->y - sin(to_alpha + half_inscribed_angle) * intersect_dist; break; } F = (4.0 / 3.0) / (1 + sqrt(1 + ((tangent_intersect_dist / radius) * (tangent_intersect_dist / radius)))); from_control->x = from->x - ((from->x - intersect_x) * F); from_control->y = from->y - ((from->y - intersect_y) * F); to_control->x = to->x - ((to->x - intersect_x) * F); to_control->y = to->y - ((to->y - intersect_y) * F); return 0; } /* Create a 'patch_curve' element whch is a straight line between two points */ static int patch_lineto(gs_matrix_fixed *ctm, gs_point *from, gs_point *to, patch_curve_t *p, float t) { double x_1third, x_2third, y_1third, y_2third; x_1third = (to->x - from->x) / 3; x_2third = x_1third * 2; y_1third = (to->y - from->y) / 3; y_2third = y_1third * 2; gs_point_transform2fixed(ctm, from->x, from->y, &p->vertex.p); gs_point_transform2fixed(ctm, from->x + x_1third, from->y + y_1third, &p->control[0]); gs_point_transform2fixed(ctm, from->x + x_2third, from->y + y_2third, &p->control[1]); p->vertex.cc[0] = t; p->vertex.cc[1] = t; p->straight = 1; return 0; } static int patch_curveto(gs_matrix_fixed *ctm, gs_point *centre, gs_point *from, gs_point *to, patch_curve_t *p, float t) { gs_point from_control, to_control; find_arc_control_points(from, to, &from_control, &to_control, centre); gs_point_transform2fixed(ctm, from->x, from->y, &p->vertex.p); gs_point_transform2fixed(ctm, from_control.x, from_control.y, &p->control[0]); gs_point_transform2fixed(ctm, to_control.x, to_control.y, &p->control[1]); p->vertex.cc[0] = t; p->vertex.cc[1] = t; p->straight = 0; return 0; } static int draw_quarter_annulus(patch_fill_state_t *pfs, gs_point *centre, double radius, gs_point *corner, float t) { gs_point p0, p1, initial; patch_curve_t p[4]; int code; if (corner->x > centre->x) { initial.x = centre->x + radius; } else { initial.x = centre->x - radius; } initial.y = centre->y; p1.x = initial.x; p1.y = corner->y; patch_lineto(&pfs->pgs->ctm, &initial, &p1, &p[0], t); p0.x = centre->x; p0.y = p1.y; patch_lineto(&pfs->pgs->ctm, &p1, &p0, &p[1], t); p1.x = centre->x; if (centre->y > corner->y) { p1.y = centre->y - radius; } else { p1.y = centre->y + radius; } patch_lineto(&pfs->pgs->ctm, &p0, &p1, &p[2], t); patch_curveto(&pfs->pgs->ctm, centre, &p1, &initial, &p[3], t); code = patch_fill(pfs, (const patch_curve_t *)&p, NULL, NULL); if (code < 0) return code; if (corner->x > centre->x) initial.x = corner->x - (corner->x - (centre->x + radius)); else initial.x = centre->x - radius; initial.y = corner->y; patch_lineto(&pfs->pgs->ctm, corner, &initial, &p[0], t); p0.x = initial.x; p0.y = centre->y; patch_lineto(&pfs->pgs->ctm, &initial, &p0, &p[1], t); p1.y = p0.y; p1.x = corner->x; patch_lineto(&pfs->pgs->ctm, &p0, &p1, &p[2], t); patch_lineto(&pfs->pgs->ctm, &p1, corner, &p[3], t); return (patch_fill(pfs, (const patch_curve_t *)&p, NULL, NULL)); } static int R_tensor_annulus_extend_tangent(patch_fill_state_t *pfs, double x0, double y0, double r0, double t0, double x1, double y1, double r1, double t1, double r2) { patch_curve_t curve[4]; gs_point p0, p1; int code = 0, q = 0; /* special case axis aligned circles. Its quicker to handle these specially as it * avoid lots of trigonometry in the general case code, and avoids us * having to watch out for infinity as the result of tan() operations. */ if (x0 == x1 || y0 == y1) { if (x0 == x1 && y0 > y1) { /* tangent at top of circles */ p0.x = x1, p0.y = y1; p1.x = x1 + r2, p1.y = y1 - r2; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); p1.x = x1 - r2, p1.y = y1 - r2; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); p1.x = x1 + r2, p1.y = y1 + r1; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); p1.x = x1 - r2, p1.y = y1 + r1; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); } if (x0 == x1 && y0 < y1) { /* tangent at bottom of circles */ p0.x = x1, p0.y = y1; p1.x = x1 + r2, p1.y = y1 + r2; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); p1.x = x1 - r2, p1.y = y1 + r2; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); p1.x = x1 + r2, p1.y = y1 - r1; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); p1.x = x1 - r2, p1.y = y1 - r1; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); } if (y0 == y1 && x0 > x1) { /* tangent at right of circles */ p0.x = x1, p0.y = y1; p1.x = x1 - r2, p1.y = y1 - r2; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); p1.x = x1 - r2, p1.y = y1 + r2; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); p1.x = x1 + r1, p1.y = y1 + r2; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); p1.x = x1 + r1, p1.y = y1 - r2; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); } if (y0 == y1 && x0 < x1) { /* tangent at left of circles */ p0.x = x1, p0.y = y1; p1.x = x1 + r2, p1.y = y1 - r2; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); p1.x = x1 + r2, p1.y = y1 + r2; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); p1.x = x1 - r1, p1.y = y1 + r2; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); p1.x = x1 - r1, p1.y = y1 - r2; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); } } else { double tx, ty, endx, endy, intersectx, intersecty, alpha, sinalpha, cosalpha, tanalpha; gs_point centre; /* First lets figure out which quadrant the smaller circle is in (we always * get called to fill from the larger circle), x0, y0, r0 is the smaller circle. */ if (x0 < x1) { if (y0 < y1) q = 2; else q = 1; } else { if (y0 < y1) q = 3; else q = 0; } switch(q) { case 0: /* We have two four-sided elements, from the tangent point * each side, to the point where the tangent crosses an * axis of the larger circle. A line back to the edge * of the larger circle, a line to the point where an axis * crosses the smaller circle, then an arc back to the starting point. */ /* Figure out the tangent point */ /* sin (angle) = y1 - y0 / r1 - r0 * ty = ((y1 - y0) / (r1 - r0)) * r1 */ ty = y1 + ((y0 - y1) / (r1 - r0)) * r1; tx = x1 + ((x0 - x1) / (r1 - r0)) * r1; /* Now actually calculating the point where the tangent crosses the axis of the larger circle * So we need to know the angle the tangent makes with the axis of the smaller circle * as its the same angle where it crosses the axis of the larger circle. * We know the centres and the tangent are co-linear, so sin(a) = y0 - y1 / r1 - r0 * We know the tangent is r1 from the centre of the larger circle, so the hypotenuse * is r0 / cos(a). That gives us 'x' and we already know y as its the centre of the larger * circle */ sinalpha = (y0 - y1) / (r1 - r0); alpha = asin(sinalpha); cosalpha = cos(alpha); intersectx = x1 + (r1 / cosalpha); intersecty = y1; p0.x = tx, p0.y = ty; p1.x = tx + (intersectx - tx) / 2, p1.y = ty - (ty - intersecty) / 2; patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); p0.x = intersectx, p0.y = intersecty; patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); p1.x = x1 + r1, p1.y = y1; patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); p0.x = tx, p0.y = ty; centre.x = x1, centre.y = y1; patch_curveto(&pfs->pgs->ctm, ¢re, &p1, &p0, &curve[3], t0); code = patch_fill(pfs, curve, NULL, NULL); if (code < 0) return code; if (intersectx < x1 + r2) { /* didn't get all the way to the edge, quadrant 3 is composed of 2 quads :-( * An 'annulus' where the right edge is less than the normal extent and a * quad which is a rectangle with one corner chopped of at an angle. */ p0.x = x1, p0.y = y1; p1.x = intersectx, p1.y = y1 - r2; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); endx = x1 + r2; endy = y1 - (tan ((M_PI / 2) - alpha)) * (endx - intersectx); p0.x = intersectx, p0.y = y1; p1.x = x1 + r2, p1.y = endy; patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); p0.x = x1 + r2, p0.y = y0 - r2; patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); p1.x = intersectx, p1.y = p0.y; patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); p0.x = intersectx, p0.y = y1; patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0); code = patch_fill(pfs, curve, NULL, NULL); if (code < 0) return code; } else { /* Quadrant 3 is a normal quarter annulua */ p0.x = x1, p0.y = y1; p1.x = x1 + r2, p1.y = y1 - r2; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); } /* Q2 is always a full annulus... */ p0.x = x1, p0.y = y1; p1.x = x1 - r2, p1.y = y1 - r2; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); /* alpha is now the angle between the x axis and the tangent to the * circles. */ alpha = (M_PI / 2) - alpha; cosalpha = cos(alpha); endy = y1 + (r1 / cosalpha); endx = x1; p0.x = tx, p0.y = ty; p1.x = endx - ((endx - tx) / 2), p1.y = endy - ((endy - ty) / 2); patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); p0.x = endx, p0.y = endy; patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); p1.x = x1, p1.y = y1 + r1; patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); p0.x = tx, p0.y = ty; centre.x = x1, centre.y = y1; patch_curveto(&pfs->pgs->ctm, ¢re, &p1, &p0, &curve[3], t0); code = patch_fill(pfs, curve, NULL, NULL); if (code < 0) return code; /* Q1 is simimlar to Q3, either a full quarter annulus * or a partial one, depending on where the tangent crosses * the y axis */ tanalpha = tan(alpha); intersecty = y1 + tanalpha * (r2 + (intersectx - x1)); intersectx = x1 - r2; if (endy < y1 + r2) { /* didn't get all the way to the edge, quadrant 1 is composed of 2 quads :-( * An 'annulus' where the right edge is less than the normal extent and a * quad which is a rectangle with one corner chopped of at an angle. */ p0.x = x1, p0.y = y1; p1.x = x1 - r2, p1.y = endy; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); p0.x = x1, p0.y = y1 + r1; p1.x = x1, p1.y = endy; patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); p0.x = x1 - r2, p0.y = intersecty; patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); p1.x = p0.x, p1.y = y1 + r1; patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); p0.x = x1, p0.y = y1 + r1; patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0); code = patch_fill(pfs, curve, NULL, NULL); if (code < 0) return code; } else { /* Quadrant 1 is a normal quarter annulua */ p0.x = x1, p0.y = y1; p1.x = x1 - r2, p1.y = y1 + r2; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); } break; case 1: /* We have two four-sided elements, from the tangent point * each side, to the point where the tangent crosses an * axis of the larger circle. A line back to the edge * of the larger circle, a line to the point where an axis * crosses the smaller circle, then an arc back to the starting point. */ /* Figure out the tangent point */ /* sin (angle) = y1 - y0 / r1 - r0 * ty = ((y1 - y0) / (r1 - r0)) * r1 */ ty = y1 + ((y0 - y1) / (r1 - r0)) * r1; tx = x1 - ((x1 - x0) / (r1 - r0)) * r1; /* Now actually calculating the point where the tangent crosses the axis of the larger circle * So we need to know the angle the tangent makes with the axis of the smaller circle * as its the same angle where it crosses the axis of the larger circle. * We know the centres and the tangent are co-linear, so sin(a) = y0 - y1 / r1 - r0 * We know the tangent is r1 from the centre of the larger circle, so the hypotenuse * is r0 / cos(a). That gives us 'x' and we already know y as its the centre of the larger * circle */ sinalpha = (y0 - y1) / (r1 - r0); alpha = asin(sinalpha); cosalpha = cos(alpha); intersectx = x1 - (r1 / cosalpha); intersecty = y1; p0.x = tx, p0.y = ty; p1.x = tx - (tx - intersectx) / 2, p1.y = ty - (ty - intersecty) / 2; patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); p0.x = intersectx, p0.y = intersecty; patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); p1.x = x1 - r1, p1.y = y1; patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); p0.x = tx, p0.y = ty; centre.x = x1, centre.y = y1; patch_curveto(&pfs->pgs->ctm, ¢re, &p1, &p0, &curve[3], t0); code = patch_fill(pfs, curve, NULL, NULL); if (code < 0) return code; if (intersectx > x1 - r2) { /* didn't get all the way to the edge, quadrant 2 is composed of 2 quads :-( * An 'annulus' where the right edge is less than the normal extent and a * quad which is a rectangle with one corner chopped of at an angle. */ p0.x = x1, p0.y = y1; p1.x = intersectx, p1.y = y1 - r2; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); endx = x1 - r2; endy = y1 - (tan ((M_PI / 2) - alpha)) * (intersectx - endx); p0.x = intersectx, p0.y = y1; p1.x = x1 - r2, p1.y = endy; patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); p0.x = x1 - r2, p0.y = y0 - r2; patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); p1.x = intersectx, p1.y = p0.y; patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); p0.x = intersectx, p0.y = y1; patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0); code = patch_fill(pfs, curve, NULL, NULL); if (code < 0) return code; } else { /* Quadrant 2 is a normal quarter annulua */ p0.x = x1, p0.y = y1; p1.x = x1 - r2, p1.y = y1 - r2; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); } /* Q3 is always a full annulus... */ p0.x = x1, p0.y = y1; p1.x = x1 + r2, p1.y = y1 - r2; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); /* alpha is now the angle between the x axis and the tangent to the * circles. */ alpha = (M_PI / 2) - alpha; cosalpha = cos(alpha); endy = y1 + (r1 / cosalpha); endx = x1; p0.x = tx, p0.y = ty; p1.x = endx + ((tx - endx) / 2), p1.y = endy - ((endy - ty) / 2); patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); p0.x = endx, p0.y = endy; patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); p1.x = x1, p1.y = y1 + r1; patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); p0.x = tx, p0.y = ty; centre.x = x1, centre.y = y1; patch_curveto(&pfs->pgs->ctm, ¢re, &p1, &p0, &curve[3], t0); code = patch_fill(pfs, curve, NULL, NULL); if (code < 0) return code; /* Q0 is simimlar to Q2, either a full quarter annulus * or a partial one, depending on where the tangent crosses * the y axis */ tanalpha = tan(alpha); intersecty = y1 + tanalpha * (r2 + (x1 - intersectx)); intersectx = x1 + r2; if (endy < y1 + r2) { /* didn't get all the way to the edge, quadrant 0 is composed of 2 quads :-( * An 'annulus' where the right edge is less than the normal extent and a * quad which is a rectangle with one corner chopped of at an angle. */ p0.x = x1, p0.y = y1; p1.x = x1 + r2, p1.y = endy; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); p0.x = x1, p0.y = y1 + r1; p1.x = x1, p1.y = endy; patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); p0.x = x1 + r2, p0.y = intersecty; patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); p1.x = p0.x, p1.y = y1 + r1; patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); p0.x = x1, p0.y = y1 + r1; patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0); code = patch_fill(pfs, curve, NULL, NULL); if (code < 0) return code; } else { /* Quadrant 0 is a normal quarter annulua */ p0.x = x1, p0.y = y1; p1.x = x1 + r2, p1.y = y1 + r2; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); } break; case 2: /* We have two four-sided elements, from the tangent point * each side, to the point where the tangent crosses an * axis of the larger circle. A line back to the edge * of the larger circle, a line to the point where an axis * crosses the smaller circle, then an arc back to the starting point. */ /* Figure out the tangent point */ /* sin (angle) = y1 - y0 / r1 - r0 * ty = ((y1 - y0) / (r1 - r0)) * r1 */ ty = y1 - ((y1 - y0) / (r1 - r0)) * r1; tx = x1 - ((x1 - x0) / (r1 - r0)) * r1; /* Now actually calculating the point where the tangent crosses the axis of the larger circle * So we need to know the angle the tangent makes with the axis of the smaller circle * as its the same angle where it crosses the axis of the larger circle. * We know the centres and the tangent are co-linear, so sin(a) = y0 - y1 / r1 - r0 * We know the tangent is r1 from the centre of the larger circle, so the hypotenuse * is r0 / cos(a). That gives us 'x' and we already know y as its the centre of the larger * circle */ sinalpha = (y1 - y0) / (r1 - r0); alpha = asin(sinalpha); cosalpha = cos(alpha); intersectx = x1 - (r1 / cosalpha); intersecty = y1; p0.x = tx, p0.y = ty; p1.x = tx + (intersectx - tx) / 2, p1.y = ty - (ty - intersecty) / 2; patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); p0.x = intersectx, p0.y = intersecty; patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); p1.x = x1 - r1, p1.y = y1; patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); p0.x = tx, p0.y = ty; centre.x = x1, centre.y = y1; patch_curveto(&pfs->pgs->ctm, ¢re, &p1, &p0, &curve[3], t0); code = patch_fill(pfs, curve, NULL, NULL); if (code < 0) return code; if (intersectx > x1 - r2) { /* didn't get all the way to the edge, quadrant 1 is composed of 2 quads :-( * An 'annulus' where the right edge is less than the normal extent and a * quad which is a rectangle with one corner chopped of at an angle. */ p0.x = x1, p0.y = y1; p1.x = intersectx, p1.y = y1 + r2; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); endy = y1+r2; endx = intersectx - ((endy - intersecty) / (tan ((M_PI / 2) - alpha))); p0.x = intersectx, p0.y = y1; p1.x = endx, p1.y = endy; patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); p0.x = x1 - r1, p0.y = endy; patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); p1.x = x1 - r1, p1.y = y1; patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); p0.x = intersectx, p0.y = y1; patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0); code = patch_fill(pfs, curve, NULL, NULL); if (code < 0) return code; } else { /* Quadrant 1 is a normal quarter annulua */ p0.x = x1, p0.y = y1; p1.x = x1 - r2, p1.y = y1 + r2; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); } /* Q0 is always a full annulus... */ p0.x = x1, p0.y = y1; p1.x = x1 + r2, p1.y = y1 + r2; if (p1.y < 0) p1.y = 0; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); /* alpha is now the angle between the x axis and the tangent to the * circles. */ alpha = (M_PI / 2) - alpha; cosalpha = cos(alpha); endy = y1 - (r1 / cosalpha); endx = x1; p0.x = tx, p0.y = ty; p1.x = endx + ((endx - tx) / 2), p1.y = endy - ((ty - endy) / 2); patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); p0.x = endx, p0.y = endy; patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); p1.x = x1, p1.y = y1 - r1; patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); p0.x = tx, p0.y = ty; centre.x = x1, centre.y = y1; patch_curveto(&pfs->pgs->ctm, ¢re, &p1, &p0, &curve[3], t0); code = patch_fill(pfs, curve, NULL, NULL); if (code < 0) return code; /* Q3 is simimlar to Q1, either a full quarter annulus * or a partial one, depending on where the tangent crosses * the y axis */ tanalpha = tan(alpha); intersecty = y1 - tanalpha * (r2 + (x1 - intersectx)); intersectx = x1 + r2; if (endy > y1 - r2) { /* didn't get all the way to the edge, quadrant 3 is composed of 2 quads :-( * An 'annulus' where the right edge is less than the normal extent and a * quad which is a rectangle with one corner chopped of at an angle. */ p0.x = x1, p0.y = y1; p1.x = x1 + r2, p1.y = endy; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); p0.x = x1, p0.y = y1 - r1; p1.x = x1, p1.y = endy; patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); p0.x = x1 + r2, p0.y = intersecty; patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); p1.x = p0.x, p1.y = y1 - r1; patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); p0.x = x1, p0.y = y1 - r1; patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0); code = patch_fill(pfs, curve, NULL, NULL); if (code < 0) return code; } else { /* Quadrant 1 is a normal quarter annulua */ p0.x = x1, p0.y = y1; p1.x = x1 + r2, p1.y = y1 - r2; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); } break; case 3: /* We have two four-sided elements, from the tangent point * each side, to the point where the tangent crosses an * axis of the larger circle. A line back to the edge * of the larger circle, a line to the point where an axis * crosses the smaller circle, then an arc back to the starting point. */ /* Figure out the tangent point */ /* sin (angle) = y1 - y0 / r1 - r0 * ty = ((y1 - y0) / (r1 - r0)) * r1 */ ty = y1 - ((y1 - y0) / (r1 - r0)) * r1; tx = x1 + ((x0 - x1) / (r1 - r0)) * r1; /* Now actually calculating the point where the tangent crosses the axis of the larger circle * So we need to know the angle the tangent makes with the axis of the smaller circle * as its the same angle where it crosses the axis of the larger circle. * We know the centres and the tangent are co-linear, so sin(a) = y0 - y1 / r1 - r0 * We know the tangent is r1 from the centre of the larger circle, so the hypotenuse * is r0 / cos(a). That gives us 'x' and we already know y as its the centre of the larger * circle */ sinalpha = (y1 - y0) / (r1 - r0); alpha = asin(sinalpha); cosalpha = cos(alpha); intersectx = x1 + (r1 / cosalpha); intersecty = y1; p0.x = tx, p0.y = ty; p1.x = tx + (intersectx - tx) / 2, p1.y = ty + (intersecty - ty) / 2; patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); p0.x = intersectx, p0.y = intersecty; patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); p1.x = x1 + r1, p1.y = y1; patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); p0.x = tx, p0.y = ty; centre.x = x1, centre.y = y1; patch_curveto(&pfs->pgs->ctm, ¢re, &p1, &p0, &curve[3], t0); code = patch_fill(pfs, curve, NULL, NULL); if (code < 0) return code; if (intersectx < x1 + r2) { /* didn't get all the way to the edge, quadrant 0 is composed of 2 quads :-( * An 'annulus' where the right edge is less than the normal extent and a * quad which is a rectangle with one corner chopped of at an angle. */ p0.x = x1, p0.y = y1; p1.x = intersectx, p1.y = y1 + r2; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); endy = y1 + r2; endx = intersectx + ((endy - intersecty) / (tan ((M_PI / 2) - alpha))); p0.x = intersectx, p0.y = y1; p1.x = endx, p1.y = endy; patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); p0.x = x1 + r1, p0.y = endy; patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); p1.x = x1 + r1, p1.y = y1; patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); p0.x = intersectx, p0.y = y1; patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0); code = patch_fill(pfs, curve, NULL, NULL); if (code < 0) return code; } else { /* Quadrant 0 is a normal quarter annulua */ p0.x = x1, p0.y = y1; p1.x = x1 + r2, p1.y = y1 + r2; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); } /* Q1 is always a full annulus... */ p0.x = x1, p0.y = y1; p1.x = x1 - r2, p1.y = y1 + r2; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); /* alpha is now the angle between the x axis and the tangent to the * circles. */ alpha = (M_PI / 2) - alpha; cosalpha = cos(alpha); endy = y1 - (r1 / cosalpha); endx = x1; p0.x = tx, p0.y = ty; p1.x = endx + ((tx - endx) / 2), p1.y = endy + ((ty - endy) / 2); patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); p0.x = endx, p0.y = endy; patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); p1.x = x1, p1.y = y1 - r1; patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); p0.x = tx, p0.y = ty; centre.x = x1, centre.y = y1; patch_curveto(&pfs->pgs->ctm, ¢re, &p1, &p0, &curve[3], t0); code = patch_fill(pfs, curve, NULL, NULL); if (code < 0) return code; /* Q3 is simimlar to Q1, either a full quarter annulus * or a partial one, depending on where the tangent crosses * the y axis */ tanalpha = tan(alpha); intersecty = y1 - tanalpha * (r2 + (intersectx - x1)); intersectx = x1 - r2; if (endy > y1 - r2) { /* didn't get all the way to the edge, quadrant 3 is composed of 2 quads :-( * An 'annulus' where the right edge is less than the normal extent and a * quad which is a rectangle with one corner chopped of at an angle. */ p0.x = x1, p0.y = y1; p1.x = x1 - r2, p1.y = endy; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); p0.x = x1, p0.y = y1 - r1; p1.x = x1, p1.y = endy; patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[0], t0); p0.x = x1 - r2, p0.y = intersecty; patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[1], t0); p1.x = p0.x, p1.y = y1 - r1; patch_lineto(&pfs->pgs->ctm, &p0, &p1, &curve[2], t0); p0.x = x1, p0.y = y1 - r1; patch_lineto(&pfs->pgs->ctm, &p1, &p0, &curve[3], t0); code = patch_fill(pfs, curve, NULL, NULL); if (code < 0) return code; } else { /* Quadrant 1 is a normal quarter annulua */ p0.x = x1, p0.y = y1; p1.x = x1 - r2, p1.y = y1 - r2; draw_quarter_annulus(pfs, &p0, r1, &p1, t0); } break; } } return 0; } static int R_outer_circle(patch_fill_state_t *pfs, const gs_rect *rect, double x0, double y0, double r0, double x1, double y1, double r1, double *x2, double *y2, double *r2) { double dx = x1 - x0, dy = y1 - y0; double sp, sq, s; /* Compute a cone circle, which contacts the rect externally. */ /* Don't bother with all 4 sides of the rect, just do with the X or Y span only, so it's not an exact contact, sorry. */ if (any_abs(dx) > any_abs(dy)) { /* Solving : x0 + (x1 - x0) * sq + r0 + (r1 - r0) * sq == bbox_px (x1 - x0) * sp + (r1 - r0) * sp == bbox_px - x0 - r0 sp = (bbox_px - x0 - r0) / (x1 - x0 + r1 - r0) x0 + (x1 - x0) * sq - r0 - (r1 - r0) * sq == bbox_qx (x1 - x0) * sq - (r1 - r0) * sq == bbox_x - x0 + r0 sq = (bbox_x - x0 + r0) / (x1 - x0 - r1 + r0) */ if (x1 - x0 + r1 - r0 == 0) /* We checked for obtuse cone. */ return_error(gs_error_unregistered); /* Must not happen. */ if (x1 - x0 - r1 + r0 == 0) /* We checked for obtuse cone. */ return_error(gs_error_unregistered); /* Must not happen. */ sp = (rect->p.x - x0 - r0) / (x1 - x0 + r1 - r0); sq = (rect->q.x - x0 + r0) / (x1 - x0 - r1 + r0); } else { /* Same by Y. */ if (y1 - y0 + r1 - r0 == 0) /* We checked for obtuse cone. */ return_error(gs_error_unregistered); /* Must not happen. */ if (y1 - y0 - r1 + r0 == 0) /* We checked for obtuse cone. */ return_error(gs_error_unregistered); /* Must not happen. */ sp = (rect->p.y - y0 - r0) / (y1 - y0 + r1 - r0); sq = (rect->q.y - y0 + r0) / (y1 - y0 - r1 + r0); } if (sp >= 1 && sq >= 1) s = max(sp, sq); else if(sp >= 1) s = sp; else if (sq >= 1) s = sq; else { /* The circle 1 is outside the rect, use it. */ s = 1; } if (r0 + (r1 - r0) * s < 0) { /* Passed the cone apex, use the apex. */ s = r0 / (r0 - r1); *r2 = 0; } else *r2 = r0 + (r1 - r0) * s; *x2 = x0 + (x1 - x0) * s; *y2 = y0 + (y1 - y0) * s; return 0; } static double R_rect_radius(const gs_rect *rect, double x0, double y0) { double d, dd; dd = hypot(rect->p.x - x0, rect->p.y - y0); d = hypot(rect->p.x - x0, rect->q.y - y0); dd = max(dd, d); d = hypot(rect->q.x - x0, rect->q.y - y0); dd = max(dd, d); d = hypot(rect->q.x - x0, rect->p.y - y0); dd = max(dd, d); return dd; } static int R_fill_triangle_new(patch_fill_state_t *pfs, const gs_rect *rect, double x0, double y0, double x1, double y1, double x2, double y2, double t) { shading_vertex_t p0, p1, p2; patch_color_t *c; int code; reserve_colors(pfs, &c, 1); /* Can't fail */ p0.c = c; p1.c = c; p2.c = c; code = gs_point_transform2fixed(&pfs->pgs->ctm, x0, y0, &p0.p); if (code >= 0) code = gs_point_transform2fixed(&pfs->pgs->ctm, x1, y1, &p1.p); if (code >= 0) code = gs_point_transform2fixed(&pfs->pgs->ctm, x2, y2, &p2.p); if (code >= 0) { c->t[0] = c->t[1] = t; patch_resolve_color(c, pfs); code = mesh_triangle(pfs, &p0, &p1, &p2); } release_colors(pfs, pfs->color_stack, 1); return code; } static int R_obtuse_cone(patch_fill_state_t *pfs, const gs_rect *rect, double x0, double y0, double r0, double x1, double y1, double r1, double t0, double r_rect) { double dx = x1 - x0, dy = y1 - y0, dr = any_abs(r1 - r0); double d = hypot(dx, dy); /* Assuming dr > d / 3 && d > dr + 1e-7 * (d + dr), see the caller. */ double r = r_rect * 1.4143; /* A few bigger than sqrt(2). */ double ax, ay, as; /* Cone apex. */ double g0; /* The distance from apex to the tangent point of the 0th circle. */ int code; as = r0 / (r0 - r1); ax = x0 + (x1 - x0) * as; ay = y0 + (y1 - y0) * as; g0 = sqrt(dx * dx + dy * dy - dr * dr) * as; if (g0 < 1e-7 * r0) { /* Nearly degenerate, replace with half-plane. */ /* Restrict the half plane with triangle, which covers the rect. */ gs_point p0, p1, p2; /* Right tangent limit, apex limit, left tangent linit, (right, left == when looking from the apex). */ p0.x = ax - dy * r / d; p0.y = ay + dx * r / d; p1.x = ax - dx * r / d; p1.y = ay - dy * r / d; p2.x = ax + dy * r / d; p2.y = ay - dx * r / d; /* Split into 2 triangles at the apex, so that the apex is preciselly covered. Especially important when it is not exactly degenerate. */ code = R_fill_triangle_new(pfs, rect, ax, ay, p0.x, p0.y, p1.x, p1.y, t0); if (code < 0) return code; return R_fill_triangle_new(pfs, rect, ax, ay, p1.x, p1.y, p2.x, p2.y, t0); } else { /* Compute the "limit" circle so that its tangent points are outside the rect. */ /* Note: this branch is executed when the condition above is false : g0 >= 1e-7 * r0 . We believe that computing this branch with doubles provides enough precision after converting coordinates into 'fixed', and that the limit circle radius is not dramatically big. */ double es, er; /* The limit circle parameter, radius. */ double ex, ey; /* The limit circle centrum. */ es = as - as * r / g0; /* Always negative. */ er = r * r0 / g0 ; ex = x0 + dx * es; ey = y0 + dy * es; /* Fill the annulus: */ code = R_tensor_annulus(pfs, x0, y0, r0, t0, ex, ey, er, t0); if (code < 0) return code; /* Fill entire ending circle to ensure entire rect is covered. */ return R_tensor_annulus(pfs, ex, ey, er, t0, ex, ey, 0, t0); } } static int R_tensor_cone_apex(patch_fill_state_t *pfs, const gs_rect *rect, double x0, double y0, double r0, double x1, double y1, double r1, double t) { double as = r0 / (r0 - r1); double ax = x0 + (x1 - x0) * as; double ay = y0 + (y1 - y0) * as; return R_tensor_annulus(pfs, x1, y1, r1, t, ax, ay, 0, t); } /* * A map of this code: * * R_extensions * |-> (R_rect_radius) * |-> (R_outer_circle) * |-> R_obtuse_cone * | |-> R_fill_triangle_new * | | '-> mesh_triangle * | | '-> mesh_triangle_rec <--. * | | |--------------------' * | | |-> small_mesh_triangle * | | | '-> fill_triangle * | | | '-> triangle_by_4 <--. * | | | |----------------' * | | | |-> constant_color_triangle * | | | |-> make_wedge_median (etc) * | | '-----------+--------------------. * | '-------------------. | * |-> R_tensor_cone_apex | | * | '-------------------+ | * '-> R_tensor_annulus <--' \|/ * |-> (make_quadrant_arc) | * '-> patch_fill | * |-> fill_patch <--. | * | |-------------' | * | |------------------------------------+ * | '-> fill_stripe | * | |-----------------------. | * | \|/ | | * |-> fill_wedges | | * '-> fill_wedges_aux <--. | | * |------------------' \|/ | * |----------------> mesh_padding ' * | '----------------------------------. * '-> wedge_by_triangles <--. . | * |---------------------' | | * '-> fill_triangle_wedge <----' | * '-> fill_triangle_wedge_aux | * '-> fill_wedge_trap | * '-> wedge_trap_decompose | * '-> linear_color_trapezoid | * '-> decompose_linear_color <--| * |-------------------------' * '-> constant_color_trapezoid */ static int R_extensions(patch_fill_state_t *pfs, const gs_shading_R_t *psh, const gs_rect *rect, double t0, double t1, bool Extend0, bool Extend1) { float x0 = psh->params.Coords[0], y0 = psh->params.Coords[1]; double r0 = psh->params.Coords[2]; float x1 = psh->params.Coords[3], y1 = psh->params.Coords[4]; double r1 = psh->params.Coords[5]; double dx = x1 - x0, dy = y1 - y0, dr = any_abs(r1 - r0); double d = hypot(dx, dy), r; int code; /* In order for the circles to be nested, one end circle * needs to be sufficiently large to cover the entirety * of the other end circle. i.e. * * max(r0,r1) >= d + min(r0,r1) * === min(r0,r1) + dr >= d + min(r0,r1) * === dr >= d * * This, plus a fudge factor for FP operation is what we use below. * * An "Obtuse Cone" is defined to be one for which the "opening * angle" is obtuse. * * Consider two circles; one at (r0,r0) of radius r0, and one at * (r1,r1) of radius r1. These clearly lie on the acute/obtuse * boundary. The distance between the centres of these two circles * is d = sqr(2.(r0-r1)^2) by pythagoras. Thus d = sqr(2).dr. * By observation if d gets longer, we become acute, shorter, obtuse. * i.e. if sqr(2).dr > d we are obtuse, if d > sqr(2).dr we are acute. * (Thanks to Paul Gardiner for this reasoning). * * The code below tests (dr > d/3) (i.e. 3.dr > d). This * appears to be a factor of 2 and a bit out, so I am confused * by it. * * Either Igor meant something different to the standard meaning * of "Obtuse Cone", or he got his maths wrong. Or he was more * cunning than I can understand. Leave it as it until we find * an actual example that goes wrong. */ /* Tests with Acrobat seem to indicate that it uses a fudge factor * of around .0001. (i.e. [1.0001 0 0 0 0 1] is accepted as a * non nested circle, but [1.00009 0 0 0 0 1] is a nested one. * Approximate the same sort of value here to appease bug 690831. */ if (any_abs (dr - d) < 0.001) { if ((r0 > r1 && Extend0) || (r1 > r0 && Extend1)) { r = R_rect_radius(rect, x0, y0); if (r0 < r1) code = R_tensor_annulus_extend_tangent(pfs, x0, y0, r0, t1, x1, y1, r1, t1, r); else code = R_tensor_annulus_extend_tangent(pfs, x1, y1, r1, t0, x0, y0, r0, t0, r); if (code < 0) return code; } else { if (r0 > r1) { if (Extend1 && r1 > 0) return R_tensor_annulus(pfs, x1, y1, r1, t1, x1, y1, 0, t1); } else { if (Extend0 && r0 > 0) return R_tensor_annulus(pfs, x0, y0, r0, t0, x0, y0, 0, t0); } } } else if (dr > d - 1e-4 * (d + dr)) { /* Nested circles, or degenerate. */ if (r0 > r1) { if (Extend0) { r = R_rect_radius(rect, x0, y0); if (r > r0) { code = R_tensor_annulus(pfs, x0, y0, r, t0, x0, y0, r0, t0); if (code < 0) return code; } } if (Extend1 && r1 > 0) return R_tensor_annulus(pfs, x1, y1, r1, t1, x1, y1, 0, t1); } else { if (Extend1) { r = R_rect_radius(rect, x1, y1); if (r > r1) { code = R_tensor_annulus(pfs, x1, y1, r, t1, x1, y1, r1, t1); if (code < 0) return code; } } if (Extend0 && r0 > 0) return R_tensor_annulus(pfs, x0, y0, r0, t0, x0, y0, 0, t0); } } else if (dr > d / 3) { /* Obtuse cone. */ if (r0 > r1) { if (Extend0) { r = R_rect_radius(rect, x0, y0); code = R_obtuse_cone(pfs, rect, x0, y0, r0, x1, y1, r1, t0, r); if (code < 0) return code; } if (Extend1 && r1 != 0) return R_tensor_cone_apex(pfs, rect, x0, y0, r0, x1, y1, r1, t1); return 0; } else { if (Extend1) { r = R_rect_radius(rect, x1, y1); code = R_obtuse_cone(pfs, rect, x1, y1, r1, x0, y0, r0, t1, r); if (code < 0) return code; } if (Extend0 && r0 != 0) return R_tensor_cone_apex(pfs, rect, x1, y1, r1, x0, y0, r0, t0); } } else { /* Acute cone or cylinder. */ double x2, y2, r2, x3, y3, r3; if (Extend0) { code = R_outer_circle(pfs, rect, x1, y1, r1, x0, y0, r0, &x3, &y3, &r3); if (code < 0) return code; if (x3 != x1 || y3 != y1) { code = R_tensor_annulus(pfs, x0, y0, r0, t0, x3, y3, r3, t0); if (code < 0) return code; } } if (Extend1) { code = R_outer_circle(pfs, rect, x0, y0, r0, x1, y1, r1, &x2, &y2, &r2); if (code < 0) return code; if (x2 != x0 || y2 != y0) { code = R_tensor_annulus(pfs, x1, y1, r1, t1, x2, y2, r2, t1); if (code < 0) return code; } } } return 0; } static int R_fill_rect_with_const_color(patch_fill_state_t *pfs, const gs_fixed_rect *clip_rect, float t) { #if 0 /* Disabled because the clist writer device doesn't pass the clipping path with fill_recatangle. */ patch_color_t pc; const gs_color_space *pcs = pfs->direct_space; gx_device_color dc; int code; code = gs_function_evaluate(pfs->Function, &t, pc.cc.paint.values); if (code < 0) return code; pcs->type->restrict_color(&pc.cc, pcs); code = patch_color_to_device_color(pfs, &pc, &dc); if (code < 0) return code; return gx_fill_rectangle_device_rop(fixed2int_pixround(clip_rect->p.x), fixed2int_pixround(clip_rect->p.y), fixed2int_pixround(clip_rect->q.x) - fixed2int_pixround(clip_rect->p.x), fixed2int_pixround(clip_rect->q.y) - fixed2int_pixround(clip_rect->p.y), &dc, pfs->dev, pfs->pgs->log_op); #else /* Can't apply fill_rectangle, because the clist writer device doesn't pass the clipping path with fill_recatangle. Convert into trapezoids instead. */ quadrangle_patch p; shading_vertex_t pp[2][2]; const gs_color_space *pcs = pfs->direct_space; patch_color_t pc; int code; code = gs_function_evaluate(pfs->Function, &t, pc.cc.paint.values); if (code < 0) return code; pcs->type->restrict_color(&pc.cc, pcs); pc.t[0] = pc.t[1] = t; pp[0][0].p = clip_rect->p; pp[0][1].p.x = clip_rect->q.x; pp[0][1].p.y = clip_rect->p.y; pp[1][0].p.x = clip_rect->p.x; pp[1][0].p.y = clip_rect->q.y; pp[1][1].p = clip_rect->q; pp[0][0].c = pp[0][1].c = pp[1][0].c = pp[1][1].c = &pc; p.p[0][0] = &pp[0][0]; p.p[0][1] = &pp[0][1]; p.p[1][0] = &pp[1][0]; p.p[1][1] = &pp[1][1]; return constant_color_quadrangle(pfs, &p, false); #endif } typedef struct radial_shading_attrs_s { double x0, y0; double x1, y1; double span[2][2]; double apex; bool have_apex; bool have_root[2]; /* ongoing contact, outgoing contact. */ bool outer_contact[2]; gs_point p[6]; /* 4 corners of the rectangle, p[4] = p[0], p[5] = p[1] */ } radial_shading_attrs_t; #define Pw2(a) ((a)*(a)) static void radial_shading_external_contact(radial_shading_attrs_t *rsa, int point_index, double t, double r0, double r1, bool at_corner, int root_index) { double cx = rsa->x0 + (rsa->x1 - rsa->x0) * t; double cy = rsa->y0 + (rsa->y1 - rsa->y0) * t; double rx = rsa->p[point_index].x - cx; double ry = rsa->p[point_index].y - cy; double dx = rsa->p[point_index - 1].x - rsa->p[point_index].x; double dy = rsa->p[point_index - 1].y - rsa->p[point_index].y; if (at_corner) { double Dx = rsa->p[point_index + 1].x - rsa->p[point_index].x; double Dy = rsa->p[point_index + 1].y - rsa->p[point_index].y; bool b1 = (dx * rx + dy * ry >= 0); bool b2 = (Dx * rx + Dy * ry >= 0); if (b1 & b2) rsa->outer_contact[root_index] = true; } else { if (rx * dy - ry * dx < 0) rsa->outer_contact[root_index] = true; } } static void store_roots(radial_shading_attrs_t *rsa, const bool have_root[2], const double t[2], double r0, double r1, int point_index, bool at_corner) { int i; for (i = 0; i < 2; i++) { bool good_root; if (!have_root[i]) continue; good_root = (!rsa->have_apex || (rsa->apex <= 0 || r0 == 0 ? t[i] >= rsa->apex : t[i] <= rsa->apex)); if (good_root) { radial_shading_external_contact(rsa, point_index, t[i], r0, r1, at_corner, i); if (!rsa->have_root[i]) { rsa->span[i][0] = rsa->span[i][1] = t[i]; rsa->have_root[i] = true; } else { if (rsa->span[i][0] > t[i]) rsa->span[i][0] = t[i]; if (rsa->span[i][1] < t[i]) rsa->span[i][1] = t[i]; } } } } static void compute_radial_shading_span_extended_side(radial_shading_attrs_t *rsa, double r0, double r1, int point_index) { double cc, c; bool have_root[2] = {false, false}; double t[2]; bool by_x = (rsa->p[point_index].x != rsa->p[point_index + 1].x); int i; /* As t moves from 0 to 1, the circles move from r0 to r1, and from * from position p0 to py. For simplicity, adjust so that p0 is at * the origin. Consider the projection of the circle drawn at any given * time onto the x axis. The range of points would be: * p1x*t +/- (r0+(r1-r0)*t). We are interested in the first (and last) * moments when the range includes a point c on the x axis. So solve for: * p1x*t +/- (r0+(r1-r0)*t) = c. Let cc = p1x. * So p1x*t0 + (r1-r0)*t0 = c - r0 => t0 = (c - r0)/(p1x + r1 - r0) * p1x*t1 - (r1-r0)*t1 = c + r0 => t1 = (c + r0)/(p1x - r1 + r0) */ if (by_x) { c = rsa->p[point_index].x - rsa->x0; cc = rsa->x1 - rsa->x0; } else { c = rsa->p[point_index].y - rsa->y0; cc = rsa->y1 - rsa->y0; } t[0] = (c - r0) / (cc + r1 - r0); t[1] = (c + r0) / (cc - r1 + r0); if (t[0] > t[1]) { c = t[0]; t[0] = t[1]; t[1] = c; } for (i = 0; i < 2; i++) { double d, d0, d1; if (by_x) { d = rsa->y1 - rsa->y0 + r0 + (r1 - r0) * t[i]; d0 = rsa->p[point_index].y; d1 = rsa->p[point_index + 1].y; } else { d = rsa->x1 - rsa->x0 + r0 + (r1 - r0) * t[i]; d0 = rsa->p[point_index].x; d1 = rsa->p[point_index + 1].x; } if (d1 > d0 ? d0 <= d && d <= d1 : d1 <= d && d <= d0) have_root[i] = true; } store_roots(rsa, have_root, t, r0, r1, point_index, false); } static int compute_radial_shading_span_extended_point(radial_shading_attrs_t *rsa, double r0, double r1, int point_index) { /* As t moves from 0 to 1, the circles move from r0 to r1, and from * from position p0 to py. At any given time t, therefore, we * paint the points that are distance r0+(r1-r0)*t from point * (p0x+(p1x-p0x)*t,p0y+(p1y-p0y)*t) = P(t). * * To simplify our algebra, adjust so that (p0x, p0y) is at the origin. * To find the time(s) t at which the a point q is painted, we therefore * solve for t in: * * |q-P(t)| = r0+(r1-r0)*t * * (qx-p1x*t)^2 + (qy-p1y*t)^2 - (r0+(r1-r0)*t)^2 = 0 * = qx^2 - 2qx.p1x.t + p1x^2.t^2 + qy^2 - 2qy.p1y.t + p1y^2.t^2 - * (r0^2 + 2r0(r1-r0)t + (r1-r0)^2.t^2) * = qx^2 + qy^2 - r0^2 * + -2(qx.p1x + qy.p1y + r0(r1-r0)).t * + (p1x^2 + p1y^2 - (r1-r0)^2).t^2 * * So solve using the usual t = (-b +/- SQRT(b^2 - 4ac)) where * a = p1x^2 + p1y^2 - (r1-r0)^2 * b = -2(qx.p1x + qy.p1y + r0(r1-r0)) * c = qx^2 + qy^2 - r0^2 */ double p1x = rsa->x1 - rsa->x0; double p1y = rsa->y1 - rsa->y0; double qx = rsa->p[point_index].x - rsa->x0; double qy = rsa->p[point_index].y - rsa->y0; double a = (Pw2(p1x) + Pw2(p1y) - Pw2(r0 - r1)); bool have_root[2] = {false, false}; double t[2]; if (fabs(a) < 1e-8) { /* Linear equation. */ /* This case is always the ongoing ellipse contact. */ double cx = rsa->x0 - (rsa->x1 - rsa->x0) * r0 / (r1 - r0); double cy = rsa->y0 - (rsa->y1 - rsa->y0) * r0 / (r1 - r0); t[0] = (Pw2(qx) + Pw2(qy))/(cx*qx + cy*qy) / 2; have_root[0] = true; } else { /* Square equation. No solution if b^2 - 4ac = 0. Equivalently if * (b^2)/4 -a.c = 0 === (b/2)^2 - a.c = 0 === (-b/2)^2 - a.c = 0 */ double minushalfb = r0*(r1-r0) + p1x*qx + p1y*qy; double c = Pw2(qx) + Pw2(qy) - Pw2(r0); double desc2 = Pw2(minushalfb) - a*c; /* desc2 = 1/4 (b^2-4ac) */ if (desc2 < 0) { return -1; /* The point is outside the shading coverage. Do not shorten, because we didn't observe it in practice. */ } else { double desc1 = sqrt(desc2); /* desc1 = 1/2 SQRT(b^2-4ac) */ if (a > 0) { t[0] = (minushalfb - desc1) / a; t[1] = (minushalfb + desc1) / a; } else { t[0] = (minushalfb + desc1) / a; t[1] = (minushalfb - desc1) / a; } have_root[0] = have_root[1] = true; } } store_roots(rsa, have_root, t, r0, r1, point_index, true); if (have_root[0] && have_root[1]) return 15; if (have_root[0]) return 15 - 4; if (have_root[1]) return 15 - 2; return -1; } #undef Pw2 static int compute_radial_shading_span_extended(radial_shading_attrs_t *rsa, double r0, double r1) { int span_type0, span_type1; span_type0 = compute_radial_shading_span_extended_point(rsa, r0, r1, 1); if (span_type0 == -1) return -1; span_type1 = compute_radial_shading_span_extended_point(rsa, r0, r1, 2); if (span_type0 != span_type1) return -1; span_type1 = compute_radial_shading_span_extended_point(rsa, r0, r1, 3); if (span_type0 != span_type1) return -1; span_type1 = compute_radial_shading_span_extended_point(rsa, r0, r1, 4); if (span_type0 != span_type1) return -1; compute_radial_shading_span_extended_side(rsa, r0, r1, 1); compute_radial_shading_span_extended_side(rsa, r0, r1, 2); compute_radial_shading_span_extended_side(rsa, r0, r1, 3); compute_radial_shading_span_extended_side(rsa, r0, r1, 4); return span_type0; } static int compute_radial_shading_span(radial_shading_attrs_t *rsa, float x0, float y0, double r0, float x1, float y1, double r1, const gs_rect * rect) { /* If the shading area is much larger than the path bbox, we want to shorten the shading for a faster rendering. If any point of the path bbox falls outside the shading area, our math is not applicable, and we render entire shading. If the path bbox is inside the shading area, we compute 1 or 2 'spans' - the shading parameter intervals, which covers the bbox. For doing that we need to resolve a square eqation by the shading parameter for each corner of the bounding box, and for each side of the shading bbox. Note the equation to be solved in the user space. Since each equation gives 2 roots (because the points are strongly inside the shading area), we will get 2 parameter intervals - the 'lower' one corresponds to the first (ongoing) contact of the running circle, and the second one corresponds to the last (outgoing) contact (like in a sun eclipse; well our sun is rectangular). Here are few exceptions. First, the equation degenerates when the distance sqrt((x1-x0)^2 + (y1-y0)^2) appears equal to r0-r1. In this case the base circles do contact, and the running circle does contact at the same point. The equation degenerates to a linear one. Since we don't want float precision noize to affect the result, we compute this condition in 'fixed' coordinates. Second, Postscript approximates any circle with 3d order beziers. This approximation may give a 2% error. Therefore using the precise roots may cause a dropout. To prevetn them, we slightly modify the base radii. However the sign of modification smartly depends on the relative sizes of the base circles, and on the contact number. Currently we don't want to define and debug the smart optimal logic for that, so we simply try all 4 variants for each source equation, and use the union of intervals. Third, we could compute which quarter of the circle really covers the path bbox. Using it we could skip rendering of uncovering quarters. Currently we do not implement this optimization. The general tensor patch algorithm will skip uncovering parts. Fourth, when one base circle is (almost) inside the other, the parameter interval must include the shading apex. To know that, we determine whether the contacting circle is outside the rectangle (the "outer" contact), or it is (partially) inside the rectangle. At last, a small shortening of a shading won't give a sensible speedup, but it may replace a symmetric function domain with an assymmetric one, so that the rendering would be asymmetyric for a symmetric shading. Therefore we do not perform a small sortening. Instead we shorten only if the shading span is much smaller that the shading domain. */ const double extent = 1.02; int span_type0, span_type1, span_type; memset(rsa, 0, sizeof(*rsa)); rsa->x0 = x0; rsa->y0 = y0; rsa->x1 = x1; rsa->y1 = y1; rsa->p[0] = rsa->p[4] = rect->p; rsa->p[1].x = rsa->p[5].x = rect->p.x; rsa->p[1].y = rsa->p[5].y = rect->q.y; rsa->p[2] = rect->q; rsa->p[3].x = rect->q.x; rsa->p[3].y = rect->p.y; rsa->have_apex = any_abs(r1 - r0) > 1e-7 * any_abs(r1 + r0); rsa->apex = (rsa->have_apex ? -r0 / (r1 - r0) : 0); span_type0 = compute_radial_shading_span_extended(rsa, r0 / extent, r1 * extent); if (span_type0 == -1) return -1; span_type1 = compute_radial_shading_span_extended(rsa, r0 / extent, r1 / extent); if (span_type0 != span_type1) return -1; span_type1 = compute_radial_shading_span_extended(rsa, r0 * extent, r1 * extent); if (span_type0 != span_type1) return -1; span_type1 = compute_radial_shading_span_extended(rsa, r0 * extent, r1 / extent); if (span_type1 == -1) return -1; if (r0 < r1) { if (rsa->have_root[0] && !rsa->outer_contact[0]) rsa->span[0][0] = rsa->apex; /* Likely never happens. Remove ? */ if (rsa->have_root[1] && !rsa->outer_contact[1]) rsa->span[1][0] = rsa->apex; } else if (r0 > r1) { if (rsa->have_root[0] && !rsa->outer_contact[0]) rsa->span[0][1] = rsa->apex; if (rsa->have_root[1] && !rsa->outer_contact[1]) rsa->span[1][1] = rsa->apex; /* Likely never happens. Remove ? */ } span_type = 0; if (rsa->have_root[0] && rsa->span[0][0] < 0) span_type |= 1; if (rsa->have_root[1] && rsa->span[1][0] < 0) span_type |= 1; if (rsa->have_root[0] && rsa->span[0][1] > 0 && rsa->span[0][0] < 1) span_type |= 2; if (rsa->have_root[1] && rsa->span[1][1] > 0 && rsa->span[1][0] < 1) span_type |= 4; if (rsa->have_root[0] && rsa->span[0][1] > 1) span_type |= 8; if (rsa->have_root[1] && rsa->span[1][1] > 1) span_type |= 8; return span_type; } static bool shorten_radial_shading(float *x0, float *y0, double *r0, float *d0, float *x1, float *y1, double *r1, float *d1, double span_[2]) { double s0 = span_[0], s1 = span_[1], w; if (s0 < 0) s0 = 0; if (s1 < 0) s1 = 0; if (s0 > 1) s0 = 1; if (s1 > 1) s1 = 1; w = s1 - s0; if (w == 0) return false; /* Don't pass a degenerate shading. */ if (w > 0.3) return false; /* The span is big, don't shorten it. */ { /* Do shorten. */ double R0 = *r0, X0 = *x0, Y0 = *y0, D0 = *d0; double R1 = *r1, X1 = *x1, Y1 = *y1, D1 = *d1; *r0 = R0 + (R1 - R0) * s0; *x0 = X0 + (X1 - X0) * s0; *y0 = Y0 + (Y1 - Y0) * s0; *d0 = D0 + (D1 - D0) * s0; *r1 = R0 + (R1 - R0) * s1; *x1 = X0 + (X1 - X0) * s1; *y1 = Y0 + (Y1 - Y0) * s1; *d1 = D0 + (D1 - D0) * s1; } return true; } static bool inline is_radial_shading_large(double x0, double y0, double r0, double x1, double y1, double r1, const gs_rect * rect) { const double d = hypot(x1 - x0, y1 - y0); const double area0 = M_PI * r0 * r0 / 2; const double area1 = M_PI * r1 * r1 / 2; const double area2 = (r0 + r1) / 2 * d; const double arbitrary = 8; double areaX, areaY; /* The shading area is not equal to area0 + area1 + area2 when one circle is (almost) inside the other. We believe that the 'arbitrary' coefficient recovers that when it is set greater than 2. */ /* If one dimension is large enough, the shading parameter span is wide. */ areaX = (rect->q.x - rect->p.x) * (rect->q.x - rect->p.x); if (areaX * arbitrary < area0 + area1 + area2) return true; areaY = (rect->q.y - rect->p.y) * (rect->q.y - rect->p.y); if (areaY * arbitrary < area0 + area1 + area2) return true; return false; } static int gs_shading_R_fill_rectangle_aux(const gs_shading_t * psh0, const gs_rect * rect, const gs_fixed_rect *clip_rect, gx_device * dev, gs_gstate * pgs) { const gs_shading_R_t *const psh = (const gs_shading_R_t *)psh0; float d0 = psh->params.Domain[0], d1 = psh->params.Domain[1]; float x0 = psh->params.Coords[0], y0 = psh->params.Coords[1]; double r0 = psh->params.Coords[2]; float x1 = psh->params.Coords[3], y1 = psh->params.Coords[4]; double r1 = psh->params.Coords[5]; radial_shading_attrs_t rsa; int span_type; /* <0 - don't shorten, 1 - extent0, 2 - first contact, 4 - last contact, 8 - extent1. */ int code; patch_fill_state_t pfs1; if (r0 == 0 && r1 == 0) return 0; /* PLRM requires to paint nothing. */ code = shade_init_fill_state((shading_fill_state_t *)&pfs1, psh0, dev, pgs); if (code < 0) return code; pfs1.Function = psh->params.Function; code = init_patch_fill_state(&pfs1); if (code < 0) { if (pfs1.icclink != NULL) gsicc_release_link(pfs1.icclink); return code; } pfs1.function_arg_shift = 0; pfs1.rect = *clip_rect; pfs1.maybe_self_intersecting = false; if (is_radial_shading_large(x0, y0, r0, x1, y1, r1, rect)) span_type = compute_radial_shading_span(&rsa, x0, y0, r0, x1, y1, r1, rect); else span_type = -1; if (span_type < 0) { code = R_extensions(&pfs1, psh, rect, d0, d1, psh->params.Extend[0], false); if (code >= 0) code = R_tensor_annulus(&pfs1, x0, y0, r0, d0, x1, y1, r1, d1); if (code >= 0) code = R_extensions(&pfs1, psh, rect, d0, d1, false, psh->params.Extend[1]); } else if (span_type == 1) { code = R_fill_rect_with_const_color(&pfs1, clip_rect, d0); } else if (span_type == 8) { code = R_fill_rect_with_const_color(&pfs1, clip_rect, d1); } else { bool second_interval = true; code = 0; if (span_type & 1) code = R_extensions(&pfs1, psh, rect, d0, d1, psh->params.Extend[0], false); if ((code >= 0) && (span_type & 2)) { float X0 = x0, Y0 = y0, D0 = d0, X1 = x1, Y1 = y1, D1 = d1; double R0 = r0, R1 = r1; if ((span_type & 4) && rsa.span[0][1] >= rsa.span[1][0]) { double united[2]; united[0] = rsa.span[0][0]; united[1] = rsa.span[1][1]; shorten_radial_shading(&X0, &Y0, &R0, &D0, &X1, &Y1, &R1, &D1, united); second_interval = false; } else { second_interval = shorten_radial_shading(&X0, &Y0, &R0, &D0, &X1, &Y1, &R1, &D1, rsa.span[0]); } code = R_tensor_annulus(&pfs1, X0, Y0, R0, D0, X1, Y1, R1, D1); } if (code >= 0 && second_interval) { if (span_type & 4) { float X0 = x0, Y0 = y0, D0 = d0, X1 = x1, Y1 = y1, D1 = d1; double R0 = r0, R1 = r1; shorten_radial_shading(&X0, &Y0, &R0, &D0, &X1, &Y1, &R1, &D1, rsa.span[1]); code = R_tensor_annulus(&pfs1, X0, Y0, R0, D0, X1, Y1, R1, D1); } } if (code >= 0 && (span_type & 8)) code = R_extensions(&pfs1, psh, rect, d0, d1, false, psh->params.Extend[1]); } if (pfs1.icclink != NULL) gsicc_release_link(pfs1.icclink); if (term_patch_fill_state(&pfs1)) return_error(gs_error_unregistered); /* Must not happen. */ return code; } int gs_shading_R_fill_rectangle(const gs_shading_t * psh0, const gs_rect * rect, const gs_fixed_rect * rect_clip, gx_device * dev, gs_gstate * pgs) { return gs_shading_R_fill_rectangle_aux(psh0, rect, rect_clip, dev, pgs); }