/* Copyright (C) 2001-2021 Artifex Software, Inc. All Rights Reserved. This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license and may not be copied, modified or distributed except as expressly authorized under the terms of the license contained in the file LICENSE in this distribution. Refer to licensing information at http://www.artifex.com or contact Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato, CA 94945, U.S.A., +1(415)492-9861, for further information. */ /* DCT filter parameter setting and reading */ #include "memory_.h" #include "jpeglib_.h" #include "gserrors.h" #include "gstypes.h" #include "gsmemory.h" #include "gsparam.h" #include "strimpl.h" /* sdct.h requires this */ #include "sdct.h" #include "sdcparam.h" #include "sjpeg.h" /* Define the DCT parameters. */ #define dctp(key, type, stype, memb) { key, type, offset_of(stype, memb) } static const gs_param_item_t s_DCT_param_items[] = { dctp("ColorTransform", gs_param_type_int, stream_DCT_state, ColorTransform), dctp("QFactor", gs_param_type_float, stream_DCT_state, QFactor), gs_param_item_end }; static const gs_param_item_t jsd_param_items[] = { dctp("Picky", gs_param_type_int, jpeg_stream_data, Picky), dctp("Relax", gs_param_type_int, jpeg_stream_data, Relax), dctp("Height", gs_param_type_int, jpeg_stream_data, Height), gs_param_item_end }; #undef dctp /* * Adobe specifies the values to be supplied in zigzag order. * For IJG versions newer than v6, we need to convert this order * to natural array order. Older IJG versions want zigzag order. */ #if JPEG_LIB_VERSION >= 61 /* natural array position of n'th element of JPEG zigzag order */ static const byte natural_order[DCTSIZE2] = { 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63 }; #define jpeg_order(x) natural_order[x] /* invert natural_order for getting parameters */ static const byte inverse_natural_order[DCTSIZE2] = { 0, 1, 5, 6, 14, 15, 27, 28, 2, 4, 7, 13, 16, 26, 29, 42, 3, 8, 12, 17, 25, 30, 41, 43, 9, 11, 18, 24, 31, 40, 44, 53, 10, 19, 23, 32, 39, 45, 52, 54, 20, 22, 33, 38, 46, 51, 55, 60, 21, 34, 37, 47, 50, 56, 59, 61, 35, 36, 48, 49, 57, 58, 62, 63 }; #define jpeg_inverse_order(x) inverse_natural_order[x] #else #define jpeg_order(x) (x) #define jpeg_inverse_order(x) (x) #endif /* ================ Get parameters ================ */ static int quant_param_string(gs_param_string * pstr, int count, const UINT16 * pvals, double QFactor, gs_memory_t * mem) { byte *data; int code = 0; int i; data = gs_alloc_string(mem, count, "quant_param_string"); if (data == 0) return_error(gs_error_VMerror); for (i = 0; i < count; ++i) { double val = pvals[jpeg_inverse_order(i)] / QFactor; data[i] = (val < 1 ? (code = 1) : val > 255 ? (code = 255) : (byte) val); } pstr->data = data; pstr->size = count; pstr->persistent = true; return code & 1; } static int quant_param_array(gs_param_float_array * pfa, int count, const UINT16 * pvals, double QFactor, gs_memory_t * mem) { float *data; int i; data = (float *)gs_alloc_byte_array(mem, count, sizeof(float), "quant_param_array"); if (data == 0) return_error(gs_error_VMerror); for (i = 0; i < count; ++i) data[i] = pvals[jpeg_inverse_order(i)] / QFactor; pfa->data = data; pfa->size = count; pfa->persistent = true; return 0; } int s_DCT_get_quantization_tables(gs_param_list * plist, const stream_DCT_state * pdct, const stream_DCT_state * defaults, bool is_encode) { gs_memory_t *mem = pdct->memory; jpeg_component_info d_comp_info[4]; int num_in_tables; const jpeg_component_info *comp_info; const jpeg_component_info *default_comp_info; JQUANT_TBL **table_ptrs; JQUANT_TBL **default_table_ptrs; gs_param_array quant_tables; double QFactor = pdct->QFactor; int i; int code; if (is_encode) { num_in_tables = pdct->data.compress->cinfo.num_components; comp_info = pdct->data.compress->cinfo.comp_info; table_ptrs = pdct->data.compress->cinfo.quant_tbl_ptrs; if (defaults) { default_comp_info = defaults->data.compress->cinfo.comp_info; default_table_ptrs = defaults->data.compress->cinfo.quant_tbl_ptrs; } } else { quant_tables.size = count_of(d_comp_info); num_in_tables = quant_tables.size; for (i = 0; i < num_in_tables; ++i) d_comp_info[i].quant_tbl_no = i; comp_info = d_comp_info; table_ptrs = pdct->data.decompress->dinfo.quant_tbl_ptrs; if (defaults) { default_comp_info = d_comp_info; default_table_ptrs = defaults->data.decompress->dinfo.quant_tbl_ptrs; } } /* Check whether all tables match defaults. */ if (defaults) { bool match = true; for (i = 0; i < num_in_tables; ++i) { JQUANT_TBL *tbl = table_ptrs[comp_info[i].quant_tbl_no]; JQUANT_TBL *default_tbl = (default_comp_info == 0 || default_table_ptrs == 0 ? 0 : default_table_ptrs[default_comp_info[i].quant_tbl_no]); if (tbl == default_tbl) continue; if (tbl == 0 || default_tbl == 0 || memcmp(tbl->quantval, default_tbl->quantval, DCTSIZE2 * sizeof(UINT16)) ) { match = false; break; } } if (match) return 0; } quant_tables.size = num_in_tables; code = param_begin_write_collection(plist, "QuantTables", &quant_tables, gs_param_collection_array); if (code < 0) return code; for (i = 0; i < num_in_tables; ++i) { char key[3]; gs_param_string str; gs_param_float_array fa; gs_sprintf(key, "%d", i); if (QFactor == 1.0) { code = quant_param_string(&str, DCTSIZE2, table_ptrs[comp_info[i].quant_tbl_no]->quantval, QFactor, mem); switch (code) { case 0: code = param_write_string(quant_tables.list, key, &str); if (code < 0) return code; /* should dealloc */ continue; default: return code; /* should dealloc */ case 1: break; } gs_free_const_string(mem, str.data, str.size, "quant_param_string"); } code = quant_param_array(&fa, DCTSIZE2, table_ptrs[comp_info[i].quant_tbl_no]->quantval, QFactor, mem); if (code < 0) return code; /* should dealloc */ code = param_write_float_array(quant_tables.list, key, &fa); if (code < 0) return code; /* should dealloc */ } return param_end_write_dict(plist, "QuantTables", &quant_tables); } static int pack_huff_table(gs_param_string * pstr, const JHUFF_TBL * table, gs_memory_t * mem) { int total; int i; byte *data; for (i = 1, total = 0; i <= 16; ++i) total += table->bits[i]; data = gs_alloc_string(mem, 16 + total, "pack_huff_table"); if (data == 0) return_error(gs_error_VMerror); memcpy(data, table->bits + 1, 16); memcpy(data + 16, table->huffval, total); pstr->data = data; pstr->size = 16 + total; pstr->persistent = true; return 0; } int s_DCT_get_huffman_tables(gs_param_list * plist, const stream_DCT_state * pdct, const stream_DCT_state * defaults, bool is_encode) { gs_memory_t *mem = pdct->memory; gs_param_string *huff_data; gs_param_string_array hta; int num_in_tables; JHUFF_TBL **dc_table_ptrs; JHUFF_TBL **ac_table_ptrs; int i; int code = 0; if (is_encode) { dc_table_ptrs = pdct->data.compress->cinfo.dc_huff_tbl_ptrs; ac_table_ptrs = pdct->data.compress->cinfo.ac_huff_tbl_ptrs; num_in_tables = pdct->data.compress->cinfo.input_components * 2; } else { dc_table_ptrs = pdct->data.decompress->dinfo.dc_huff_tbl_ptrs; ac_table_ptrs = pdct->data.decompress->dinfo.ac_huff_tbl_ptrs; for (i = 2; i > 0; --i) if (dc_table_ptrs[i - 1] || ac_table_ptrs[i - 1]) break; num_in_tables = i * 2; } /****** byte_array IS WRONG ******/ huff_data = (gs_param_string *) gs_alloc_byte_array(mem, num_in_tables, sizeof(gs_param_string), "get huffman tables"); if (huff_data == 0) return_error(gs_error_VMerror); for (i = 0; i < num_in_tables; i += 2) { if ((code = pack_huff_table(huff_data + i, ac_table_ptrs[i >> 1], mem)) < 0 || (code = pack_huff_table(huff_data + i + 1, dc_table_ptrs[i >> 1], mem)) ) break; } if (code < 0) return code; hta.data = huff_data; hta.size = num_in_tables; hta.persistent = true; return param_write_string_array(plist, "HuffTables", &hta); } int s_DCT_get_params(gs_param_list * plist, const stream_DCT_state * ss, const stream_DCT_state * defaults) { int code = gs_param_write_items(plist, ss, defaults, s_DCT_param_items); if (code >= 0) code = gs_param_write_items(plist, ss->data.common, (defaults ? defaults->data.common : NULL), jsd_param_items); return code; } /* ================ Put parameters ================ */ stream_state_proc_put_params(s_DCT_put_params, stream_DCT_state); /* check */ /* ---------------- Utilities ---------------- */ /* * Get N byte-size values from an array or a string. * Used for HuffTables, HSamples, VSamples. */ int s_DCT_byte_params(gs_param_list * plist, gs_param_name key, int start, int count, UINT8 * pvals) { int i; gs_param_string bytes; gs_param_float_array floats; gs_param_int_array ints; int code = param_read_string(plist, key, &bytes); switch (code) { case 0: if (bytes.size < start + count) { code = gs_note_error(gs_error_rangecheck); } else { for (i = 0; i < count; ++i) pvals[i] = (UINT8) bytes.data[start + i]; code = 0; } break; default: /* might be a float array */ code = param_read_int_array(plist, key, &ints); if (!code) { if (ints.size < start + count) { code = gs_note_error(gs_error_rangecheck); } else { for (i = 0; i < count; ++i) { pvals[i] = ints.data[start + i]; } code = 0; } } else { code = param_read_float_array(plist, key, &floats); if (!code) { if (floats.size < start + count) { code = gs_note_error(gs_error_rangecheck); } else { for (i = 0; i < count; ++i) { float v = floats.data[start + i]; if (v < 0 || v > 255) { code = gs_note_error(gs_error_rangecheck); break; } pvals[i] = (UINT8) (v + 0.5); } } if (code >= 0) code = 0; } else code = 1; } break; } if (code < 0) param_signal_error(plist, key, code); return code; } /* Get N quantization values from an array or a string. */ static int quant_params(gs_param_list * plist, gs_param_name key, int count, UINT16 * pvals, double QFactor) { int i; gs_param_string bytes; gs_param_float_array floats; int code = param_read_string(plist, key, &bytes); switch (code) { case 0: if (bytes.size != count) { code = gs_note_error(gs_error_rangecheck); break; } for (i = 0; i < count; ++i) { double v = bytes.data[i] * QFactor; pvals[jpeg_order(i)] = (UINT16) (v < 1 ? 1 : v > 255 ? 255 : v + 0.5); } return 0; default: /* might be a float array */ code = param_read_float_array(plist, key, &floats); if (!code) { if (floats.size != count) { code = gs_note_error(gs_error_rangecheck); break; } for (i = 0; i < count; ++i) { double v = floats.data[i] * QFactor; pvals[jpeg_order(i)] = (UINT16) (v < 1 ? 1 : v > 255 ? 255 : v + 0.5); } } } if (code < 0) param_signal_error(plist, key, code); return code; #undef jpeg_order } /* ---------------- Main procedures ---------------- */ /* Put common scalars. */ int s_DCT_put_params(gs_param_list * plist, stream_DCT_state * pdct) { int code = gs_param_read_items(plist, pdct, s_DCT_param_items); if (code < 0) return code; code = gs_param_read_items(plist, pdct->data.common, jsd_param_items); if (code < 0) return code; if (pdct->data.common->Picky < 0 || pdct->data.common->Picky > 1 || pdct->data.common->Relax < 0 || pdct->data.common->Relax > 1 || pdct->ColorTransform < -1 || pdct->ColorTransform > 2 || pdct->QFactor < 0.0 || pdct->QFactor > 1000000.0 ) return_error(gs_error_rangecheck); return 0; } /* Put quantization tables. */ int s_DCT_put_quantization_tables(gs_param_list * plist, stream_DCT_state * pdct, bool is_encode) { int code; int i, j; gs_param_array quant_tables; /* array of strings/arrays */ int num_in_tables; int num_out_tables; jpeg_component_info *comp_info; JQUANT_TBL **table_ptrs; JQUANT_TBL *this_table; switch ((code = param_begin_read_dict(plist, "QuantTables", &quant_tables, true)) ) { case 1: return 1; default: return param_signal_error(plist, "QuantTables", code); case 0: ; } if (is_encode) { num_in_tables = pdct->data.compress->cinfo.num_components; if (quant_tables.size < num_in_tables) return_error(gs_error_rangecheck); comp_info = pdct->data.compress->cinfo.comp_info; table_ptrs = pdct->data.compress->cinfo.quant_tbl_ptrs; } else { num_in_tables = quant_tables.size; comp_info = NULL; /* do not set for decompress case */ table_ptrs = pdct->data.decompress->dinfo.quant_tbl_ptrs; } num_out_tables = 0; for (i = 0; i < num_in_tables; ++i) { char istr[5]; /* i converted to string key */ UINT16 values[DCTSIZE2]; gs_sprintf(istr, "%d", i); code = quant_params(quant_tables.list, istr, DCTSIZE2, values, pdct->QFactor); if (code < 0) return code; /* Check for duplicate tables. */ for (j = 0; j < num_out_tables; j++) { if (!memcmp(table_ptrs[j]->quantval, values, sizeof(values))) break; } if (comp_info != NULL) comp_info[i].quant_tbl_no = j; if (j < num_out_tables) /* found a duplicate */ continue; if (++num_out_tables > NUM_QUANT_TBLS) return_error(gs_error_rangecheck); this_table = table_ptrs[j]; if (this_table == NULL) { this_table = gs_jpeg_alloc_quant_table(pdct); if (this_table == NULL) return_error(gs_error_VMerror); table_ptrs[j] = this_table; } memcpy(this_table->quantval, values, sizeof(values)); } return 0; } /* Put Huffman tables. */ static int find_huff_values(JHUFF_TBL ** table_ptrs, int num_tables, const UINT8 * counts, const UINT8 * values, int codes_size) { int j; for (j = 0; j < num_tables; ++j) if (!memcmp(table_ptrs[j]->bits, counts, 16*sizeof(counts[0])) && !memcmp(table_ptrs[j]->huffval, values, codes_size * sizeof(values[0]))) break; return j; } int s_DCT_put_huffman_tables(gs_param_list * plist, stream_DCT_state * pdct, bool is_encode) { int code; int i, j; gs_param_array huff_tables; int num_in_tables; int ndc, nac; int codes_size; jpeg_component_info *comp_info; JHUFF_TBL **dc_table_ptrs; JHUFF_TBL **ac_table_ptrs; JHUFF_TBL **this_table_ptr; JHUFF_TBL *this_table; int max_tables = 2; /* baseline limit */ switch ((code = param_begin_read_dict(plist, "HuffTables", &huff_tables, true)) ) { case 1: return 0; default: return param_signal_error(plist, "HuffTables", code); case 0: ; } if (is_encode) { num_in_tables = pdct->data.compress->cinfo.input_components * 2; if (huff_tables.size < num_in_tables) return_error(gs_error_rangecheck); comp_info = pdct->data.compress->cinfo.comp_info; dc_table_ptrs = pdct->data.compress->cinfo.dc_huff_tbl_ptrs; ac_table_ptrs = pdct->data.compress->cinfo.ac_huff_tbl_ptrs; if (pdct->data.common->Relax) max_tables = max(pdct->data.compress->cinfo.input_components, 2); } else { num_in_tables = huff_tables.size; comp_info = NULL; /* do not set for decompress case */ dc_table_ptrs = pdct->data.decompress->dinfo.dc_huff_tbl_ptrs; ac_table_ptrs = pdct->data.decompress->dinfo.ac_huff_tbl_ptrs; if (pdct->data.common->Relax) max_tables = NUM_HUFF_TBLS; } ndc = nac = 0; for (i = 0; i < num_in_tables; ++i) { char istr[5]; /* i converted to string key */ UINT8 counts[16], values[256]; /* Collect the Huffman parameters. */ gs_sprintf(istr, "%d", i); code = s_DCT_byte_params(huff_tables.list, istr, 0, 16, counts); if (code < 0) return code; for (codes_size = 0, j = 0; j < 16; j++) codes_size += counts[j]; if (codes_size > 256 /*|| r_size(pa) != codes_size+16 */ ) return_error(gs_error_rangecheck); code = s_DCT_byte_params(huff_tables.list, istr, 16, codes_size, values); if (code < 0) return code; if (i & 1) { j = find_huff_values(ac_table_ptrs, nac, counts, values, codes_size); if (comp_info != NULL) comp_info[i >> 1].ac_tbl_no = j; if (j < nac) continue; if (++nac > NUM_HUFF_TBLS) return_error(gs_error_rangecheck); this_table_ptr = ac_table_ptrs + j; } else { j = find_huff_values(dc_table_ptrs, ndc, counts, values, codes_size); if (comp_info != NULL) comp_info[i >> 1].dc_tbl_no = j; if (j < ndc) continue; if (++ndc > NUM_HUFF_TBLS) return_error(gs_error_rangecheck); this_table_ptr = dc_table_ptrs + j; } this_table = *this_table_ptr; if (this_table == NULL) { this_table = gs_jpeg_alloc_huff_table(pdct); if (this_table == NULL) return_error(gs_error_VMerror); *this_table_ptr = this_table; } memcpy(this_table->bits, counts, sizeof(counts)); memcpy(this_table->huffval, values, codes_size * sizeof(values[0])); } if (nac > max_tables || ndc > max_tables) return_error(gs_error_rangecheck); return 0; }