/* Copyright (C) 2001-2021 Artifex Software, Inc. All Rights Reserved. This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license and may not be copied, modified or distributed except as expressly authorized under the terms of the license contained in the file LICENSE in this distribution. Refer to licensing information at http://www.artifex.com or contact Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato, CA 94945, U.S.A., +1(415)492-9861, for further information. */ /* PLanar Interlaced Banded device */ #include "gdevprn.h" #include "gscdefs.h" #include "gscspace.h" /* For pnm_begin_typed_image(..) */ #include "gxgetbit.h" #include "gxlum.h" #include "gxiparam.h" /* For pnm_begin_typed_image(..) */ #include "gdevmpla.h" #include "gdevplnx.h" #include "gdevppla.h" #include "gdevplib.h" /* Band donor functions */ #include "gdevmem.h" /* This file defines 5 different devices: * * plib 24 bit RGB (8 bits per channel) * plibg 8 bit Grayscale * plibm 1 bit Monochrome * plibc 32 bit CMYK (8 bits per channel) * plibk 4 bit CMYK (1 bit per channel) * * It is intended that this device will be built on top of a 'Band Donor' * that will be responsible for allocating and pass us band buffers for us * to fill, and to process them as it wishes on completion. * * If the band_donor functions are not thread safe, or modify the device, then * the gdev_prn_bg_output_page should be changed to use gdev_prn_output_page. * * For debugging/QA purposes this file can be built with the following * define enabled, and stub versions of these band donor functions will * be included here. */ #define TESTING_WITH_NO_BAND_DONOR /* Define DEBUG_PRINT to enable some debugging printfs. */ #undef DEBUG_PRINT /* Define DEBUG_DUMP to dump the data to the output stream. */ #define DEBUG_DUMP /* Define HT_RAW_DUMP to store the output as a raw CMYK buffer with the data size packed into the file name. Photoshop does not handle pam cmyk properly so we resort to this for debugging */ #define HT_RAW_DUMP /* Define SHORTSTOP_MEMCPY_ETC to enable braindead implementations of memcpy * and memset etc in this file. This serves to help profiling on some * systems, though it should be noted that our implementations here are NOT * anywhere near as efficient as typical C libraries ones. */ #undef SHORTSTOP_MEMCPY_ETC #ifdef SHORTSTOP_MEMCPY_ETC void *memset(void *s_, int c, size_t n) { byte *s = (byte *)s_; while (n--) *s++ = (unsigned char)c; return s; } void __aebi_memset8(void *dest, size_t n, int c) { memset(dest, c,n); } void __aebi_memset4(void *dest, size_t n, int c) { memset(dest, c,n); } void __aebi_memset(void *dest, size_t n, int c) { memset(dest, c,n); } void __aebi_memclr8(void *dest, size_t n) { memset(dest, 0,n); } void __aebi_memclr4(void *dest, size_t n) { memset(dest, 0,n); } void __aebi_memclr(void *dest, size_t n) { memset(dest, 0,n); } void *memcpy(void *s_, const void *t_, size_t n) { byte *s = (byte *)s_; const byte *t = (const byte *)t_; while (n--) *s++ = *t++; return s; } void __aebi_memcpy8(void *dest, const void *src, size_t n) { memcpy(dest, src,n); } void __aebi_memcpy4(void *dest, const void *src, size_t n) { memcpy(dest, src,n); } void __aebi_memcpy(void *dest, const void *src, size_t n) { memcpy(dest, src,n); } void *memmove(void *s_, const void *t_, size_t n) { byte *s = (byte *)s_; const byte *t = (const byte *)t_; if (s < t) { while (n--) *s++ = *t++; } else { s += n; t += n; while (n--) *--s = *--t; } return s; } void __aebi_memmove8(void *dest, const void *src, size_t n) { memmove(dest, src,n); } void __aebi_memcmove4(void *dest, const void *src, size_t n) { memmove(dest, src,n); } void __aebi_memmove(void *dest, const void *src, size_t n) { memmove(dest, src,n); } #endif #ifdef TESTING_WITH_NO_BAND_DONOR #include static void *my_buffer; int gs_band_donor_init(void **opaque, gs_memory_t *mem) { #ifdef DEBUG_PRINT emprintf(mem, "gs_band_donor_init\n"); #endif *opaque = NULL; return 0; } void *gs_band_donor_band_get(void *opaque, uint uWidth, uint uHeight, uint uBitDepth, uint uComponents, uint uStride, uint uBandHeight) { #ifdef DEBUG_PRINT eprintf6("gs_band_donor_band_get[%dx%dx%dx%d (stride=%d bandHeight=%d)]\n", uWidth, uHeight, uBitDepth, uComponents, uStride, uBandHeight); #endif my_buffer = (void *)malloc(uStride * uComponents * uBandHeight); #ifdef DEBUG_PRINT q = my_buffer; for (y = uBandHeight; y > 0; y--) { for (p = 0; p < uComponents; p++) { memset(q, 0x10+p, uStride); q += uStride; } } #endif return my_buffer; } int gs_band_donor_band_full(void *opaque, uint nLines) { #ifdef DEBUG_PRINT eprintf1("gs_band_donor_band_full[%d]\n", nLines); #endif return 0; } int gs_band_donor_band_release(void *opaque) { #ifdef DEBUG_PRINT eprintf("gs_band_donor_band_release\n"); #endif free(my_buffer); my_buffer = NULL; return 0; } void gs_band_donor_fin(void *opaque) { #ifdef DEBUG_PRINT eprintf("gs_band_donor_fin\n"); #endif } #endif /* Sanit requires us to work in bands of at least 200 lines */ #define MINBANDHEIGHT 200 /* Structure for plib devices, which extend the generic printer device. */ struct gx_device_plib_s { gx_device_common; gx_prn_device_common; /* Additional state for plib device */ void *opaque; }; typedef struct gx_device_plib_s gx_device_plib; /* ------ The device descriptors ------ */ /* * Default X and Y resolution. */ #define X_DPI 600 #define Y_DPI 600 /* For all but mono, we need our own color mapping and alpha procedures. */ static dev_proc_decode_color(plib_decode_color); static dev_proc_encode_color(plibg_encode_color); static dev_proc_decode_color(plibg_decode_color); static dev_proc_decode_color(plibc_decode_color); static dev_proc_encode_color(plibc_encode_color); static dev_proc_map_color_rgb(plibc_map_color_rgb); static dev_proc_open_device(plib_open); static dev_proc_close_device(plib_close); static dev_proc_put_params(plib_put_params); /* And of course we need our own print-page routines. */ static dev_proc_print_page(plib_print_page); static int plib_print_page(gx_device_printer * pdev, gp_file * pstream); static int plibm_print_page(gx_device_printer * pdev, gp_file * pstream); static int plibg_print_page(gx_device_printer * pdev, gp_file * pstream); static int plibc_print_page(gx_device_printer * pdev, gp_file * pstream); static int plibk_print_page(gx_device_printer * pdev, gp_file * pstream); /* The device procedures */ /* See gdevprn.h for the template for the following. */ #define pgpm_procs(p_color_rgb, p_encode_color, p_decode_color) {\ plib_open,\ NULL, /* get_initial_matrix */ \ NULL, /* sync output */ \ /* Since the print_page doesn't alter the device, this device can print in the background */\ gdev_prn_bg_output_page, \ plib_close,\ NULL, /* map_rgb_color */ \ p_color_rgb, /* map_color_rgb */ \ NULL, /* fill_rectangle */ \ NULL, /* tile_rectangle */ \ NULL, /* copy_mono */ \ NULL, /* copy_color */ \ NULL, /* draw_line */ \ NULL, /* get_bits */ \ gdev_prn_get_params, \ plib_put_params,\ NULL, /* map_cmyk_color */ \ NULL, /* get_xfont_procs */ \ NULL, /* get_xfont_device */ \ NULL, /* map_rgb_alpha_color */ \ gx_page_device_get_page_device, \ NULL, /* get_alpha_bits */\ NULL, /* copy_alpha */\ NULL, /* get_band */\ NULL, /* copy_rop */\ NULL, /* fill_path */\ NULL, /* stroke_path */\ NULL, /* fill_mask */\ NULL, /* fill_trapezoid */\ NULL, /* fill_parallelogram */\ NULL, /* fill_triangle */\ NULL, /* draw_thin_line */\ NULL, /* begin_image */\ NULL, /* image_data */\ NULL, /* end_image */\ NULL, /* strip_tile_rectangle */\ NULL, /* strip_copy_rop */\ NULL, /* get_clipping_box */\ NULL, /* begin_typed_image */\ NULL, /* get_bits_rectangle */\ NULL, /* map_color_rgb_alpha */\ NULL, /* create_compositor */\ NULL, /* get_hardware_params */\ NULL, /* text_begin */\ NULL, /* finish_copydevice */\ NULL, /* begin_transparency_group */\ NULL, /* end_transparency_group */\ NULL, /* begin_transparency_mask */\ NULL, /* end_transparency_mask */\ NULL, /* discard_transparency_layer */\ NULL, /* get_color_mapping_procs */\ NULL, /* get_color_comp_index */\ p_encode_color, /* encode_color */\ p_decode_color, /* decode_color */\ NULL, /* pattern_manage */\ NULL, /* fill_rectangle_hl_color */\ NULL, /* include_color_space */\ NULL, /* fill_linear_color_scanline */\ NULL, /* fill_linear_color_trapezoid */\ NULL, /* fill_linear_color_triangle */\ NULL, /* update spot */\ NULL, /* DevN params */\ NULL, /* fill page */\ NULL, /* push_transparency_state */\ NULL, /* pop_transparency_state */\ NULL, /* put_image */\ NULL /* dev_spec_op */\ } static const gx_device_procs plibm_procs = pgpm_procs(NULL, gdev_prn_map_rgb_color, gdev_prn_map_color_rgb); static const gx_device_procs plibg_procs = pgpm_procs(NULL, plibg_encode_color, plibg_decode_color); static const gx_device_procs plib_procs = pgpm_procs(NULL, gx_default_rgb_map_rgb_color, plib_decode_color); static const gx_device_procs plibc_procs = pgpm_procs(plibc_map_color_rgb, plibc_encode_color, plibc_decode_color); static const gx_device_procs plibk_procs = pgpm_procs(plibc_map_color_rgb, plibc_encode_color, plibc_decode_color); /* Macro for generating device descriptors. */ /* Ideally we'd use something like: * #define plib_prn_device(procs, dev_name, num_comp, depth, max_gray, max_rgb, print_page) \ * { prn_device_body(gx_device_plib, procs, dev_name,\ * DEFAULT_WIDTH_10THS, DEFAULT_HEIGHT_10THS, X_DPI, Y_DPI,\ * 0, 0, 0, 0,\ * num_comp, depth, max_gray, max_rgb, max_gray + 1, max_rgb + 1,\ * print_page)\ * } * But that doesn't let us override the band space params. So we have to do * it the large way. */ #define plib_prn_device(procs, dev_name, num_comp, depth, max_gray, max_rgb, print_page) \ { std_device_full_body_type(gx_device_plib, &procs, dev_name, &st_device_printer,\ (int)((float)(DEFAULT_WIDTH_10THS) * (X_DPI) / 10 + 0.5),\ (int)((float)(DEFAULT_HEIGHT_10THS) * (Y_DPI) / 10 + 0.5),\ X_DPI, Y_DPI,\ num_comp, depth, max_gray, max_rgb, max_gray + 1, max_rgb + 1,\ (float)(0), (float)(0),\ (float)(0), (float)(0),\ (float)(0), (float)(0)\ ),\ prn_device_body_rest2_(print_page, gx_default_print_page_copies, -1)} /* The device descriptors themselves */ const gx_device_plib gs_plib_device = plib_prn_device(plib_procs, "plib", 3, 24, 255, 255, plib_print_page); const gx_device_plib gs_plibg_device = plib_prn_device(plibg_procs, "plibg", 1, 8, 255, 0, plibg_print_page); const gx_device_plib gs_plibm_device = plib_prn_device(plibm_procs, "plibm", 1, 1, 1, 0, plibm_print_page); const gx_device_plib gs_plibk_device = plib_prn_device(plibk_procs, "plibk", 4, 4, 1, 1, plibk_print_page); const gx_device_plib gs_plibc_device = plib_prn_device(plibc_procs, "plibc", 4, 32, 255, 255, plibc_print_page); /* ------ Initialization ------ */ /* * We need to create custom memory buffer devices that just point into the * bandBuffer we've got from the digicolor system. */ static byte *bandBufferBase = NULL; static int bandBufferStride = 0; #ifdef DEBUG_DUMP static int dump_w; static int dump_nc; static int dump_l2bits; static void dump_start(int w, int h, int num_comps, int log2bits, gp_file *dump_file) { if ((num_comps == 3) && (log2bits == 3)) { /* OK */ } else if ((num_comps == 1) && (log2bits == 0)) { /* OK */ } else if ((num_comps == 1) && (log2bits == 3)) { /* OK */ } else if ((num_comps == 4) && (log2bits == 0)) { /* OK */ } else if ((num_comps == 4) && (log2bits == 3)) { /* OK */ } else return; dump_nc = num_comps; dump_l2bits = log2bits; if (dump_file == NULL) return; if (dump_nc == 3) gp_fprintf(dump_file, "P6 %d %d 255\n", w, h); else if (dump_nc == 4) { gp_fprintf(dump_file, "P7\nWIDTH %d\nHEIGHT %d\nDEPTH 4\n" "MAXVAL 255\nTUPLTYPE CMYK\nENDHDR\n", w, h); } else if (log2bits == 0) gp_fprintf(dump_file, "P4 %d %d\n", w, h); else gp_fprintf(dump_file, "P5 %d %d 255\n", w, h); dump_w = w; } static void dump_band(int y, gp_file *dump_file) { byte *r = bandBufferBase; byte *g = r + bandBufferStride; byte *b = g + bandBufferStride; byte *k = b + bandBufferStride; if (dump_file == NULL) return; if (dump_nc == 3) { while (y--) { int w = dump_w; while (w--) { gp_fputc(*r++, dump_file); gp_fputc(*g++, dump_file); gp_fputc(*b++, dump_file); } r += bandBufferStride*3-dump_w; g += bandBufferStride*3-dump_w; b += bandBufferStride*3-dump_w; } } else if (dump_nc == 4) { if (dump_l2bits == 0) { while (y--) { int w = dump_w; while (w) { byte C = *r++; byte M = *g++; byte Y = *b++; byte K = *k++; int s; for (s=7; s>=0; s--) { gp_fputc(255*((C>>s)&1), dump_file); gp_fputc(255*((M>>s)&1), dump_file); gp_fputc(255*((Y>>s)&1), dump_file); gp_fputc(255*((K>>s)&1), dump_file); w--; if (w == 0) break; } } r += bandBufferStride*4-((dump_w+7)>>3); g += bandBufferStride*4-((dump_w+7)>>3); b += bandBufferStride*4-((dump_w+7)>>3); k += bandBufferStride*4-((dump_w+7)>>3); } } else { while (y--) { int w = dump_w; while (w--) { gp_fputc(*r++, dump_file); gp_fputc(*g++, dump_file); gp_fputc(*b++, dump_file); gp_fputc(*k++, dump_file); } r += bandBufferStride*4-dump_w; g += bandBufferStride*4-dump_w; b += bandBufferStride*4-dump_w; k += bandBufferStride*4-dump_w; } } } else { if (dump_l2bits == 0) { while (y--) { int w = (dump_w+7)>>3; while (w--) { gp_fputc(*r++, dump_file); } r += bandBufferStride - ((dump_w+7)>>3); } } else { while (y--) { int w = dump_w; while (w--) { gp_fputc(*r++, dump_file); } r += bandBufferStride - dump_w; } } } } #endif int plib_put_params(gx_device * pdev, gs_param_list * plist) { int ecode = 0; int code; gx_device_printer * const ppdev = (gx_device_printer *)pdev; /* Assumed to be valid on entry - remember it */ int bandHeight = ppdev->space_params.band.BandHeight; code = gdev_prn_put_params(pdev, plist); /* Note that 0 means "default". This will encounter a future check in "open" */ if (ppdev->space_params.band.BandHeight != 0 && ppdev->space_params.band.BandHeight < MINBANDHEIGHT) { emprintf2(pdev->memory, "BandHeight of %d not valid, BandHeight minimum is %d\n", ppdev->space_params.band.BandHeight, MINBANDHEIGHT); ecode = gs_error_rangecheck; /* Restore to the previous (possibly default == 0) value */ ppdev->space_params.band.BandHeight = bandHeight; } if (ecode >= 0) ecode = code; return ecode; } /* * Set up the scan line pointers of a memory device. * See gxdevmem.h for the detailed specification. * Sets or uses line_ptrs, base, raster; uses width, color_info.depth, * num_planes, plane_depths, plane_depth. */ static int set_line_ptrs(gx_device_memory * mdev, byte * base, int raster, byte **line_ptrs, int setup_height) { int num_planes = mdev->color_info.num_components; int pi; if (num_planes) { if (base && !mdev->plane_depth) return_error(gs_error_rangecheck); } else { num_planes = 1; } if (line_ptrs) { mdev->line_ptrs = line_ptrs; for (pi = 0; pi < num_planes; ++pi) { byte **pend = line_ptrs + setup_height; byte *scan_line = base; while (line_ptrs < pend) { *line_ptrs++ = scan_line; scan_line += raster * num_planes; } base += raster; } } return 0; } static int plib_setup_buf_device(gx_device *bdev, byte *buffer, int bytes_per_line, byte **line_ptrs, int y, int setup_height, int full_height) { gx_device_memory *mdev = (gx_device_memory *)bdev; int code; /* buffer is the buffer used by clist writing. We could use that as the * page buffer, but we'd rather use the buffer given to us by the * digicolor code. b */ if (line_ptrs == NULL) { /* Free any existing line pointers array */ if (mdev->line_ptrs != NULL) gs_free_object(mdev->line_pointer_memory, mdev->line_ptrs, "mem_close"); /* * Allocate line pointers now; free them when we close the device. * Note that for multi-planar devices, we have to allocate using * full_height rather than setup_height. */ line_ptrs = (byte **) gs_alloc_byte_array(mdev->memory, (mdev->is_planar ? full_height * mdev->color_info.num_components : setup_height), sizeof(byte *), "setup_buf_device"); if (line_ptrs == 0) return_error(gs_error_VMerror); mdev->line_pointer_memory = mdev->memory; mdev->foreign_line_pointers = false; mdev->line_ptrs = line_ptrs; mdev->raster = bandBufferStride * (mdev->is_planar ? mdev->color_info.num_components : 1); } mdev->height = full_height; code = set_line_ptrs(mdev, bandBufferBase + bandBufferStride*(mdev->is_planar ? mdev->color_info.num_components : 1)*y, bandBufferStride, line_ptrs, setup_height); mdev->height = setup_height; bdev->height = setup_height; /* do here in case mdev == bdev */ return code; } static int plib_get_bits_rectangle_mem(gx_device *pdev, const gs_int_rect *prect, gs_get_bits_params_t *params, gs_int_rect **pprect) { gx_device_memory *mdev = (gx_device_memory *)pdev; int x = prect->p.x, y = prect->p.y, h = prect->q.y - y; /* First off, see if we can satisfy get_bits_rectangle with just returning * pointers to the existing data. */ { gs_get_bits_params_t copy_params; byte **base = &scan_line_base(mdev, y); int code; copy_params.options = GB_COLORS_NATIVE | GB_PACKING_PLANAR | GB_ALPHA_NONE | (mdev->raster == bitmap_raster(mdev->width * mdev->color_info.depth) ? GB_RASTER_STANDARD : GB_RASTER_SPECIFIED); copy_params.raster = mdev->raster; code = gx_get_bits_return_pointer(pdev, x, h, params, ©_params, base); if (code >= 0) return code; } return mem_get_bits_rectangle(pdev, prect, params, pprect); } static int plib_create_buf_device(gx_device **pbdev, gx_device *target, int y, const gx_render_plane_t *render_plane, gs_memory_t *mem, gx_color_usage_t *color_usage) { int code = gdev_prn_create_buf_planar(pbdev, target, y, render_plane, mem, color_usage); if (code < 0) return code; if (dev_proc((*pbdev), get_bits_rectangle) == mem_get_bits_rectangle) set_dev_proc((*pbdev), get_bits_rectangle, plib_get_bits_rectangle_mem); return 0; } static int plib_size_buf_device(gx_device_buf_space_t *space, gx_device *target, const gx_render_plane_t *render_plane, int height, bool for_band) { return gdev_prn_size_buf_planar(space, target, render_plane, height, for_band); } /* * Define a special open procedure that changes create_buf_device to use * a planar device. */ static int plib_open(gx_device * pdev) { gx_device_plib * const bdev = (gx_device_plib *)pdev; gx_device_printer * const ppdev = (gx_device_printer *)pdev; int code; #ifdef DEBUG_PRINT emprintf(pdev->memory, "plib_open\n"); #endif bdev->printer_procs.buf_procs.create_buf_device = plib_create_buf_device; bdev->printer_procs.buf_procs.setup_buf_device = plib_setup_buf_device; bdev->printer_procs.buf_procs.size_buf_device = plib_size_buf_device; pdev->is_planar = 1; bdev->space_params.banding_type = BandingAlways; /* You might expect us to call gdev_prn_open_planar rather than * gdev_prn_open, but if we do that, it overwrites the 2 function * pointers we've just overwritten! */ code = gdev_prn_open(pdev); if (code < 0) return code; if (ppdev->space_params.band.BandHeight < MINBANDHEIGHT) { emprintf2(pdev->memory, "BandHeight of %d not valid, BandHeight minimum is %d\n", ((gx_device_printer *)pdev)->space_params.band.BandHeight, MINBANDHEIGHT); return_error(gs_error_rangecheck); } pdev->color_info.separable_and_linear = GX_CINFO_SEP_LIN; set_linear_color_bits_mask_shift(pdev); /* Start the actual job. */ #ifdef DEBUG_PRINT emprintf(pdev->memory, "calling job_begin\n"); #endif code = gs_band_donor_init(&bdev->opaque, pdev->memory); #ifdef DEBUG_PRINT emprintf(pdev->memory, "called\n"); #endif return code; } static int plib_close(gx_device *pdev) { gx_device_plib *pldev = (gx_device_plib *)pdev; #ifdef DEBUG_PRINT emprintf(pdev->memory, "plib_close\n"); #endif gs_band_donor_fin(pldev->opaque); pldev->opaque = NULL; return gdev_prn_close(pdev); } /* ------ Color mapping routines ------ */ /* Map an RGB color to a gray value. */ static gx_color_index plibg_encode_color(gx_device * pdev, const gx_color_value cv[]) { /* We round the value rather than truncating it. */ gx_color_value gray; gx_color_value r, g, b; r = cv[0]; g = cv[0]; b = cv[0]; gray = ((r * (ulong) lum_red_weight) + (g * (ulong) lum_green_weight) + (b * (ulong) lum_blue_weight) + (lum_all_weights / 2)) / lum_all_weights * pdev->color_info.max_gray / gx_max_color_value; return gray; } /* Map a gray value back to an RGB color. */ static int plibg_decode_color(gx_device * dev, gx_color_index color, gx_color_value prgb[3]) { gx_color_value gray = color * gx_max_color_value / dev->color_info.max_gray; prgb[0] = gray; prgb[1] = gray; prgb[2] = gray; return 0; } /* Map an rgb color tuple back to an RGB color. */ static int plib_decode_color(gx_device * dev, gx_color_index color, gx_color_value prgb[3]) { uint bitspercolor = dev->color_info.depth / 3; uint colormask = (1 << bitspercolor) - 1; uint max_rgb = dev->color_info.max_color; prgb[0] = ((color >> (bitspercolor * 2)) & colormask) * (ulong) gx_max_color_value / max_rgb; prgb[1] = ((color >> bitspercolor) & colormask) * (ulong) gx_max_color_value / max_rgb; prgb[2] = (color & colormask) * (ulong) gx_max_color_value / max_rgb; return 0; } /* Map a cmyk color tuple back to CMYK colorants. */ static int plibc_decode_color(gx_device * dev, gx_color_index color, gx_color_value prgb[4]) { uint bitspercolor = dev->color_info.depth / 4; uint colormask = (1 << bitspercolor) - 1; uint c, m, y, k; #define cvalue(c) ((gx_color_value)((ulong)(c) * gx_max_color_value / colormask)) k = color & colormask; color >>= bitspercolor; y = color & colormask; color >>= bitspercolor; m = color & colormask; c = color >> bitspercolor; prgb[0] = cvalue(c); prgb[1] = cvalue(m); prgb[2] = cvalue(y); prgb[3] = cvalue(k); return 0; } /* Map CMYK to color. */ static gx_color_index plibc_encode_color(gx_device * dev, const gx_color_value cv[]) { int bpc = dev->color_info.depth / 4; gx_color_index color; COLROUND_VARS; COLROUND_SETUP(bpc); color = ((((((COLROUND_ROUND(cv[0]) << bpc) + COLROUND_ROUND(cv[1])) << bpc) + COLROUND_ROUND(cv[2])) << bpc) + COLROUND_ROUND(cv[3])); /* The bitcmyk device does this: * return (color == gx_no_color_index ? color ^ 1 : color); * But I don't understand why. */ return color; } /* Map a cmyk color back to an rgb tuple. */ static int plibc_map_color_rgb(gx_device * dev, gx_color_index color, gx_color_value prgb[3]) { uint bitspercolor = dev->color_info.depth / 4; uint colormask = (1 << bitspercolor) - 1; uint c, m, y, k; #define cvalue(c) ((gx_color_value)((ulong)(c) * gx_max_color_value / colormask)) k = color & colormask; color >>= bitspercolor; y = color & colormask; color >>= bitspercolor; m = color & colormask; c = color >> bitspercolor; k = colormask - k; prgb[0] = cvalue((colormask - c) * k / colormask); prgb[1] = cvalue((colormask - m) * k / colormask); prgb[2] = cvalue((colormask - y) * k / colormask); return 0; } /* ------ Internal routines ------ */ /* Print a page using a given row printing routine. */ static int plib_print_page_loop(gx_device_printer * pdev, int log2bits, int numComps, gp_file *pstream) { gx_device_plib *pldev = (gx_device_plib *)pdev; int lnum; int code = 0; byte *buffer; int stride = bitmap_raster(pdev->width * (1<space_params.band.BandHeight; #ifdef DEBUG_PRINT emprintf(pdev->memory, "Calling page_begin\n"); #endif buffer = gs_band_donor_band_get(pldev->opaque, pdev->width, pdev->height, 1<memory, "Called page_begin %x\n", buffer); #endif if (buffer == NULL) return_error(gs_error_VMerror); /* Write these into the globals here so the setup_buf_device code can * find it later. Nasty. */ bandBufferBase = buffer; bandBufferStride = stride; #ifdef DEBUG_DUMP dump_start(pdev->width, pdev->height, numComps, log2bits, pstream); #endif for (lnum = 0; lnum < pdev->height; lnum += bandHeight) { gs_int_rect *unread, rect; gs_get_bits_params_t params; rect.p.x = 0; rect.p.y = lnum; rect.q.x = pdev->width; rect.q.y = lnum+bandHeight; if (rect.q.y > pdev->height) rect.q.y = pdev->height; memset(¶ms, 0, sizeof(params)); params.options = GB_ALIGN_ANY | GB_RETURN_POINTER | GB_OFFSET_0 | GB_RASTER_STANDARD | GB_PACKING_PLANAR | GB_COLORS_NATIVE | GB_ALPHA_NONE; params.x_offset = 0; code = (*dev_proc(pdev, get_bits_rectangle))((gx_device *)pdev, &rect, ¶ms,&unread); if (code < 0) break; #ifdef DEBUG_DUMP dump_band(rect.q.y-rect.p.y, pstream); #endif #ifdef DEBUG_PRINT emprintf3(pdev->memory, "Calling band_full (%d->%d) of %d\n", rect.p.y, rect.q.y, pdev->height); #endif gs_band_donor_band_full(pldev->opaque, rect.q.y-rect.p.y); #ifdef DEBUG_PRINT emprintf(pdev->memory, "Called band_full\n"); #endif } #ifdef DEBUG_PRINT emprintf(pdev->memory, "Calling band_release\n"); #endif gs_band_donor_band_release(pldev->opaque); #ifdef DEBUG_PRINT emprintf(pdev->memory, "Called band_release\n"); #endif return (code < 0 ? code : 0); } /* ------ Individual page printing routines ------ */ /* Print a monobit page. */ static int plibm_print_page(gx_device_printer * pdev, gp_file * pstream) { #ifdef DEBUG_PRINT emprintf(pdev->memory, "plibm_print_page\n"); #endif return plib_print_page_loop(pdev, 0, 1, pstream); } /* Print a gray-mapped page. */ static int plibg_print_page(gx_device_printer * pdev, gp_file * pstream) { #ifdef DEBUG_PRINT emprintf(pdev->memory, "plibg_print_page\n"); #endif return plib_print_page_loop(pdev, 3, 1, pstream); } /* Print a color-mapped page. */ static int plib_print_page(gx_device_printer * pdev, gp_file * pstream) { #ifdef DEBUG_PRINT emprintf(pdev->memory, "plibc_print_page\n"); #endif return plib_print_page_loop(pdev, 3, 3, pstream); } /* Print a 1 bit CMYK page. */ static int plibk_print_page(gx_device_printer * pdev, gp_file * pstream) { #ifdef DEBUG_PRINT emprintf(pdev->memory, "plibk_print_page\n"); #endif return plib_print_page_loop(pdev, 0, 4, pstream); } /* Print an 8bpc CMYK page. */ static int plibc_print_page(gx_device_printer * pdev, gp_file * pstream) { #ifdef DEBUG_PRINT emprintf(pdev->memory, "plibc_print_page\n"); #endif return plib_print_page_loop(pdev, 3, 4, pstream); }