/////////////////////////////////////////////////////////////////////// // File: intsimdmatrixavx2.cpp // Description: matrix-vector product for 8-bit data on avx2. // Author: Ray Smith // // (C) Copyright 2017, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /////////////////////////////////////////////////////////////////////// #if defined(__AVX2__) #include "intsimdmatrix.h" #include #include #include #include namespace tesseract { // Number of outputs held in each register. 8 x 32 bit ints. constexpr int kNumOutputsPerRegister = 8; // Maximum number of registers that we will use. constexpr int kMaxOutputRegisters = 8; // Number of inputs in the inputs register. constexpr int kNumInputsPerRegister = 32; // Number of inputs in each weight group. constexpr int kNumInputsPerGroup = 4; // Number of groups of inputs to be broadcast. constexpr int kNumInputGroups = kNumInputsPerRegister / kNumInputsPerGroup; // Functions to compute part of a matrix.vector multiplication. The weights // are in a very specific order (see above) in w, which is multiplied by // u of length num_in, to produce output v after scaling the integer results // by the corresponding member of scales. // The amount of w and scales consumed is fixed and not available to the // caller. The number of outputs written to v will be at most num_out. // Computes one set of 4x8 products of inputs and weights, adding to result. // Horizontally adds 4 adjacent results, making 8x32-bit results. // rep_input is assumed to be an 8x replicated set of 4x8-bit signed integers. // Note that wi must previously have been re-organized with blocks of 4x8 // weights in contiguous memory. // ones is a register of 16x16-bit values all equal to 1. // Note: wi is incremented by the amount of data read. // weights and reps are scratch registers. // This function must be inlined with references in order for the compiler to // correctly use the registers declared in the caller. static inline void MultiplyGroup(const __m256i& rep_input, const __m256i& ones, const int8_t*& wi, __m256i& weights, __m256i& reps, __m256i& result) { // Load a 4x8 block of weights. weights = _mm256_loadu_si256(reinterpret_cast(wi)); wi += kNumInputsPerRegister; // Normalize the signs on rep_input, weights, so weights is always +ve. reps = _mm256_sign_epi8(rep_input, weights); weights = _mm256_sign_epi8(weights, weights); // Multiply 32x8-bit reps by 32x8-bit weights to make 16x16-bit results, // with adjacent pairs added. weights = _mm256_maddubs_epi16(weights, reps); // Multiply 16x16-bit result by 16x16-bit ones to make 8x32-bit results, // with adjacent pairs added. What we really want is a horizontal add of // 16+16=32 bit result, but there is no such instruction, so multiply by // 16-bit ones instead. It is probably faster than all the sign-extending, // permuting and adding that would otherwise be required. weights = _mm256_madd_epi16(weights, ones); result = _mm256_add_epi32(result, weights); } // Load 64 bits into the bottom of a 128bit register. // We don't actually care what the top 64bits are, but this ends // up with them being zero. static inline __m128i load64_to_128(const int8_t *wi_) { const int64_t *wi = reinterpret_cast(wi_); return _mm_set_epi64x(0, wi[0]); } static inline void ExtractResults8(__m256i result, const int8_t* wi, const double* scales, double* v) { __m128i w128 = load64_to_128(wi); // 8x8bit vals in bottom of 128bit reg __m256i w256 = _mm256_cvtepi8_epi32(w128); // 8x32bit vals in 256bit reg __m256i bias_scale = _mm256_set_epi32(127,127,127,127,127,127,127,127); __m256d scale0123 = _mm256_loadu_pd(scales); __m256d scale4567 = _mm256_loadu_pd(scales+4); w256 = _mm256_mullo_epi32(w256, bias_scale); // 8x32 result = _mm256_add_epi32(result, w256); // result += bias * 127 __m256d res0123 = _mm256_cvtepi32_pd(_mm256_castsi256_si128(result)); result = _mm256_permute4x64_epi64(result, 2+(3<<2)); __m256d res4567 = _mm256_cvtepi32_pd(_mm256_castsi256_si128(result)); res0123 = _mm256_mul_pd(res0123, scale0123); res4567 = _mm256_mul_pd(res4567, scale4567); _mm256_storeu_pd(v, res0123); _mm256_storeu_pd(v+4, res4567); } static inline void ExtractResults16(__m256i result0, __m256i result1, const int8_t*& wi, const double*& scales, double*& v) { __m128i w8 = _mm_loadu_si128(reinterpret_cast(wi)); // 8x8bit vals in bottom of 128bit reg const __m256i bias_scale = _mm256_set_epi32(127,127,127,127,127,127,127,127); __m256i w256 = _mm256_cvtepi8_epi32(w8); // 8x32bit vals in 256bit reg __m256d scale0123 = _mm256_loadu_pd(scales); __m256d scale4567 = _mm256_loadu_pd(scales+4); w256 = _mm256_mullo_epi32(w256, bias_scale); // 8x32 result0 = _mm256_add_epi32(result0, w256); // result += bias * 127 __m256d res0123 = _mm256_cvtepi32_pd(_mm256_castsi256_si128(result0)); result0 = _mm256_permute4x64_epi64(result0, 2+(3<<2)); __m256d res4567 = _mm256_cvtepi32_pd(_mm256_castsi256_si128(result0)); res0123 = _mm256_mul_pd(res0123, scale0123); res4567 = _mm256_mul_pd(res4567, scale4567); _mm256_storeu_pd(v, res0123); _mm256_storeu_pd(v+4, res4567); w8 = _mm_shuffle_epi32(w8,2+(3<<2)); w256 = _mm256_cvtepi8_epi32(w8); // 8x32bit vals in 256bit reg scale0123 = _mm256_loadu_pd(scales+8); scale4567 = _mm256_loadu_pd(scales+12); w256 = _mm256_mullo_epi32(w256, bias_scale); // 8x32 result1 = _mm256_add_epi32(result1, w256); // result += bias * 127 res0123 = _mm256_cvtepi32_pd(_mm256_castsi256_si128(result1)); result1 = _mm256_permute4x64_epi64(result1, 2+(3<<2)); res4567 = _mm256_cvtepi32_pd(_mm256_castsi256_si128(result1)); res0123 = _mm256_mul_pd(res0123, scale0123); res4567 = _mm256_mul_pd(res4567, scale4567); _mm256_storeu_pd(v+8, res0123); _mm256_storeu_pd(v+12, res4567); wi += 16; scales += 16; v += 16; } // Computes part of matrix.vector v = Wu. Computes N=64 results. // The weights *must* be arranged so that consecutive reads from wi // provides (num_in/kNumInputsPerGroup groups of (N output dim groups of // (kNumInputsPerGroup inputs))). After that there must be N consecutive // bias weights, before continuing with any more weights. // u must be padded out with zeros to // kNumInputsPerGroup*ceil(num_in/kNumInputsPerGroup) elements. static void PartialMatrixDotVector64(const int8_t* wi, const double* scales, const int8_t* u, int num_in, double* v) { // Register containing 16-bit ones for horizontal add with 16->32 bit // conversion. __m256i ones = _mm256_set_epi16(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1); __m256i shift_id = _mm256_set_epi32(0, 7, 6, 5, 4, 3, 2, 1); // Initialize all the results to 0. __m256i result0 = _mm256_setzero_si256(); __m256i result1 = _mm256_setzero_si256(); __m256i result2 = _mm256_setzero_si256(); __m256i result3 = _mm256_setzero_si256(); __m256i result4 = _mm256_setzero_si256(); __m256i result5 = _mm256_setzero_si256(); __m256i result6 = _mm256_setzero_si256(); __m256i result7 = _mm256_setzero_si256(); // Iterate over the input (u), one registerful at a time. for (int j = 0; j < num_in;) { __m256i inputs = _mm256_loadu_si256(reinterpret_cast(u + j)); // Inputs are processed in groups of kNumInputsPerGroup, replicated // kNumInputGroups times. for (int ig = 0; ig < kNumInputGroups && j < num_in; ++ig, j += kNumInputsPerGroup) { // Replicate the low 32 bits (4 inputs) 8 times. __m256i rep_input = _mm256_broadcastd_epi32(_mm256_castsi256_si128(inputs)); // Rotate the inputs in groups of 4, so the next 4 inputs are ready. inputs = _mm256_permutevar8x32_epi32(inputs, shift_id); __m256i weights, reps; // Mul-add, with horizontal add of the 4 inputs to each of the results. MultiplyGroup(rep_input, ones, wi, weights, reps, result0); MultiplyGroup(rep_input, ones, wi, weights, reps, result1); MultiplyGroup(rep_input, ones, wi, weights, reps, result2); MultiplyGroup(rep_input, ones, wi, weights, reps, result3); MultiplyGroup(rep_input, ones, wi, weights, reps, result4); MultiplyGroup(rep_input, ones, wi, weights, reps, result5); MultiplyGroup(rep_input, ones, wi, weights, reps, result6); MultiplyGroup(rep_input, ones, wi, weights, reps, result7); } } ExtractResults16(result0, result1, wi, scales, v); ExtractResults16(result2, result3, wi, scales, v); ExtractResults16(result4, result5, wi, scales, v); ExtractResults16(result6, result7, wi, scales, v); } // Computes part of matrix.vector v = Wu. Computes N=32 results. // For details see PartialMatrixDotVector64 with N=32. static void PartialMatrixDotVector32(const int8_t* wi, const double* scales, const int8_t* u, int num_in, double* v) { // Register containing 16-bit ones for horizontal add with 16->32 bit // conversion. __m256i ones = _mm256_set_epi16(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1); __m256i shift_id = _mm256_set_epi32(0, 7, 6, 5, 4, 3, 2, 1); // Initialize all the results to 0. __m256i result0 = _mm256_setzero_si256(); __m256i result1 = _mm256_setzero_si256(); __m256i result2 = _mm256_setzero_si256(); __m256i result3 = _mm256_setzero_si256(); // Iterate over the input (u), one registerful at a time. for (int j = 0; j < num_in;) { __m256i inputs = _mm256_loadu_si256(reinterpret_cast(u + j)); // Inputs are processed in groups of kNumInputsPerGroup, replicated // kNumInputGroups times. for (int ig = 0; ig < kNumInputGroups && j < num_in; ++ig, j += kNumInputsPerGroup) { // Replicate the low 32 bits (4 inputs) 8 times. __m256i rep_input = _mm256_broadcastd_epi32(_mm256_castsi256_si128(inputs)); // Rotate the inputs in groups of 4, so the next 4 inputs are ready. inputs = _mm256_permutevar8x32_epi32(inputs, shift_id); __m256i weights, reps; // Mul-add, with horizontal add of the 4 inputs to each of the results. MultiplyGroup(rep_input, ones, wi, weights, reps, result0); MultiplyGroup(rep_input, ones, wi, weights, reps, result1); MultiplyGroup(rep_input, ones, wi, weights, reps, result2); MultiplyGroup(rep_input, ones, wi, weights, reps, result3); } } ExtractResults16(result0, result1, wi, scales, v); ExtractResults16(result2, result3, wi, scales, v); } // Computes part of matrix.vector v = Wu. Computes N=16 results. // For details see PartialMatrixDotVector64 with N=16. static void PartialMatrixDotVector16(const int8_t* wi, const double* scales, const int8_t* u, int num_in, double* v) { // Register containing 16-bit ones for horizontal add with 16->32 bit // conversion. __m256i ones = _mm256_set_epi16(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1); __m256i shift_id = _mm256_set_epi32(0, 7, 6, 5, 4, 3, 2, 1); // Initialize all the results to 0. __m256i result0 = _mm256_setzero_si256(); __m256i result1 = _mm256_setzero_si256(); // Iterate over the input (u), one registerful at a time. for (int j = 0; j < num_in;) { __m256i inputs = _mm256_loadu_si256(reinterpret_cast(u + j)); // Inputs are processed in groups of kNumInputsPerGroup, replicated // kNumInputGroups times. for (int ig = 0; ig < kNumInputGroups && j < num_in; ++ig, j += kNumInputsPerGroup) { // Replicate the low 32 bits (4 inputs) 8 times. __m256i rep_input = _mm256_broadcastd_epi32(_mm256_castsi256_si128(inputs)); // Rotate the inputs in groups of 4, so the next 4 inputs are ready. inputs = _mm256_permutevar8x32_epi32(inputs, shift_id); __m256i weights, reps; // Mul-add, with horizontal add of the 4 inputs to each of the results. MultiplyGroup(rep_input, ones, wi, weights, reps, result0); MultiplyGroup(rep_input, ones, wi, weights, reps, result1); } } ExtractResults16(result0, result1, wi, scales, v); } // Computes part of matrix.vector v = Wu. Computes N=8 results. // For details see PartialMatrixDotVector64 with N=8. static inline void PartialMatrixDotVector8(const int8_t *wi, const double *scales, const int8_t *u, int num_in, double *v) { // Register containing 16-bit ones for horizontal add with 16->32 bit // conversion. __m256i ones = _mm256_set_epi16(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1); __m256i shift_id = _mm256_set_epi32(0, 7, 6, 5, 4, 3, 2, 1); // Initialize all the results to 0. __m256i result0 = _mm256_setzero_si256(); // Iterate over the input (u), one registerful at a time. for (int j = 0; j < num_in;) { __m256i inputs = _mm256_loadu_si256(reinterpret_cast(u + j)); // Inputs are processed in groups of kNumInputsPerGroup, replicated // kNumInputGroups times. for (int ig = 0; ig < kNumInputGroups && j < num_in; ++ig, j += kNumInputsPerGroup) { // Replicate the low 32 bits (4 inputs) 8 times. __m256i rep_input = _mm256_broadcastd_epi32(_mm256_castsi256_si128(inputs)); // Rotate the inputs in groups of 4, so the next 4 inputs are ready. inputs = _mm256_permutevar8x32_epi32(inputs, shift_id); __m256i weights, reps; // Mul-add, with horizontal add of the 4 inputs to each of the results. MultiplyGroup(rep_input, ones, wi, weights, reps, result0); } } ExtractResults8(result0, wi, scales, v); } static void matrixDotVector(int dim1, int dim2, const int8_t* wi, const double* scales, const int8_t* u, double* v) { const int num_out = dim1; const int num_in = dim2 - 1; // Each call to a partial_func_ produces group_size outputs, except the // last one, which can produce less. const int rounded_num_in = IntSimdMatrix::Roundup(num_in, kNumInputsPerGroup); const int rounded_num_out = IntSimdMatrix::Roundup(num_out, kNumOutputsPerRegister); int group_size = kNumOutputsPerRegister * kMaxOutputRegisters; int output = 0; int w_step = (rounded_num_in + 1) * group_size; // Run with this group size, until it would produce too much output, then // switch to a smaller size. for (; output + group_size <= rounded_num_out; output += group_size) { PartialMatrixDotVector64(wi, scales, u, rounded_num_in, v); wi += w_step; scales += group_size; v += group_size; } group_size /= 2; w_step /= 2; if (output + group_size <= rounded_num_out) { PartialMatrixDotVector32(wi, scales, u, rounded_num_in, v); wi += w_step; scales += group_size; v += group_size; output += group_size; } group_size /= 2; w_step /= 2; if (output + group_size <= rounded_num_out) { PartialMatrixDotVector16(wi, scales, u, rounded_num_in, v); wi += w_step; scales += group_size; v += group_size; output += group_size; } group_size /= 2; w_step /= 2; if (output + group_size <= rounded_num_out) PartialMatrixDotVector8(wi, scales, u, rounded_num_in, v); } const IntSimdMatrix IntSimdMatrix::intSimdMatrixAVX2 = { // Function. matrixDotVector, // Number of 32 bit outputs held in each register. kNumOutputsPerRegister, // Maximum number of registers that we will use to hold outputs. kMaxOutputRegisters, // Number of 8 bit inputs in the inputs register. kNumInputsPerRegister, // Number of inputs in each weight group. kNumInputsPerGroup }; } // namespace tesseract. #endif