/////////////////////////////////////////////////////////////////////// // File: intsimdmatrixneon.cpp // Description: matrix-vector product for 8-bit data on neon. // Author: Robin Watts (from the AVX2 original by Ray Smith) // // (C) Copyright 2017, Google Inc. // (C) Copyright 2020, Artifex Software Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /////////////////////////////////////////////////////////////////////// #if defined(__ARM_NEON) #include "intsimdmatrix.h" #include "arm_neon.h" #include #include #include namespace tesseract { // Number of outputs held in each register. (Actually, we use a // pair of 4x32 registers, so 8 x 32 bit ints). constexpr int kNumOutputsPerRegister = 8; // Maximum number of registers that we will use. constexpr int kMaxOutputRegisters = 1; // Number of inputs in the inputs register. constexpr int kNumInputsPerRegister = 8; // Number of inputs in each weight group. constexpr int kNumInputsPerGroup = 8; // Function to compute part of a matrix.vector multiplication. The weights // are in a very specific order (see above) in w, which is multiplied by // u of length num_in, to produce output v after scaling the integer results // by the corresponding member of scales. // The amount of w and scales consumed is fixed and not available to the // caller. // Computes part of matrix.vector v = Wu. Computes N=8 results. // The weights *must* be arranged so that consecutive reads from wi // provides (num_in/kNumInputsPerGroup groups of (N output dim groups of // (kNumInputsPerGroup inputs))). After that there must be N consecutive // bias weights, before continuing with any more weights. // u must be padded out with zeros to // kNumInputsPerGroup*ceil(num_in/kNumInputsPerGroup) elements. static inline void PartialMatrixDotVector8(const int8_t* __restrict wi, const double* __restrict scales, const int8_t* __restrict u, int num_in, double* __restrict v, int num_out) { // Initialize all the results to 0. int32x4_t result0123 = { 0, 0, 0, 0 }; int32x4_t result4567 = { 0, 0, 0, 0 }; int8x8_t bias_scale = { 127, 127, 127, 127, 127, 127, 127, 127 }; // Iterate over the input (u), one registerful at a time. for (int j = 0; j < num_in; j += 8) { int8x8_t vu = vld1_s8(u); // vu = u0 u1 u2 u3 u4 u5 u6 u7 int8x16_t vw01 = vld1q_s8(wi); // vw0 = w00 w01 w02 w03 w04 w05 w06 w07 w10 w11 w12 w13 w14 w15 w16 w17 int8x16_t vw23 = vld1q_s8(wi+8*2); // vw2 = w20 w21 w22 w23 w24 w25 w26 w27 w30 w31 w32 w33 w34 w35 w36 w37 int8x16_t vw45 = vld1q_s8(wi+8*4); // vw4 = w40 w41 w42 w43 w44 w45 w46 w47 w50 w51 w52 w53 w54 w55 w56 w57 int8x16_t vw67 = vld1q_s8(wi+8*6); // vw6 = w60 w61 w62 w63 w64 w65 w66 w67 w70 w71 w72 w73 w74 w75 w76 w77 int16x8_t vrow0q = vmull_s8(vget_low_s8(vw01), vu); // vrow0q = vw00.u0 w01.u1 w02.u2 w03.u3 vw04.u4 w05.u5 w06.u6 w07.u7 int16x8_t vrow1q = vmull_s8(vget_high_s8(vw01), vu); // vrow1q = vw10.u0 w11.u1 w12.u2 w13.u3 vw14.u4 w15.u5 w16.u6 w17.u7 int16x8_t vrow2q = vmull_s8(vget_low_s8(vw23), vu); // vrow2q = vw20.u0 w21.u1 w22.u2 w23.u3 vw24.u4 w25.u5 w26.u6 w27.u7 int16x8_t vrow3q = vmull_s8(vget_high_s8(vw23), vu); // vrow3q = vw30.u0 w31.u1 w32.u2 w33.u3 vw34.u4 w35.u5 w36.u6 w37.u7 int16x8_t vrow4q = vmull_s8(vget_low_s8(vw45), vu); // vrow4q = vw40.u0 w41.u1 w42.u2 w43.u3 vw44.u4 w45.u5 w46.u6 w47.u7 int16x8_t vrow5q = vmull_s8(vget_high_s8(vw45), vu); // vrow5q = vw50.u0 w51.u1 w52.u2 w53.u3 vw54.u4 w55.u5 w56.u6 w57.u7 int16x8_t vrow6q = vmull_s8(vget_low_s8(vw67), vu); // vrow6q = vw60.u0 w61.u1 w62.u2 w63.u3 vw64.u4 w65.u5 w66.u6 w67.u7 int16x8_t vrow7q = vmull_s8(vget_high_s8(vw67), vu); // vrow7q = vw70.u0 w71.u1 w72.u2 w73.u3 vw74.u4 w75.u5 w76.u6 w77.u7 int32x4_t vrow0q2 = vpaddlq_s16(vrow0q); // vrow0q2 = vw00.u0+w01.u1 w02.u2+w03.u3 vw04.u4+w05.u5 w06.u6+w07.u7 int32x4_t vrow1q2 = vpaddlq_s16(vrow1q); // vrow1q2 = vw10.u0+w11.u1 w12.u2+w13.u3 vw14.u4+w15.u5 w16.u6+w17.u7 int32x4_t vrow2q2 = vpaddlq_s16(vrow2q); // vrow2q2 = vw20.u0+w21.u1 w22.u2+w23.u3 vw24.u4+w25.u5 w26.u6+w27.u7 int32x4_t vrow3q2 = vpaddlq_s16(vrow3q); // vrow3q2 = vw30.u0+w31.u1 w32.u2+w33.u3 vw34.u4+w35.u5 w36.u6+w37.u7 int32x4_t vrow4q2 = vpaddlq_s16(vrow4q); // vrow4q2 = vw40.u0+w41.u1 w42.u2+w43.u3 vw44.u4+w45.u5 w46.u6+w47.u7 int32x4_t vrow5q2 = vpaddlq_s16(vrow5q); // vrow5q2 = vw50.u0+w51.u1 w52.u2+w53.u3 vw54.u4+w55.u5 w56.u6+w57.u7 int32x4_t vrow6q2 = vpaddlq_s16(vrow6q); // vrow6q2 = vw60.u0+w61.u1 w62.u2+w63.u3 vw64.u4+w65.u5 w66.u6+w67.u7 int32x4_t vrow7q2 = vpaddlq_s16(vrow7q); // vrow7q2 = vw70.u0+w71.u1 w72.u2+w73.u3 vw74.u4+w75.u5 w76.u6+w77.u7 vrow0q2 = vcombine_s32(vpadd_s32(vget_low_s32(vrow0q2), vget_high_s32(vrow0q2)), vpadd_s32(vget_low_s32(vrow1q2), vget_high_s32(vrow1q2))); // vrow0q2 = vw00.u0+...+w03.u3 vw04.u4+...+w07.u7 vw10.u0+...+w13.u3 vw14.u4+...+w17.u7 vrow2q2 = vcombine_s32(vpadd_s32(vget_low_s32(vrow2q2), vget_high_s32(vrow2q2)), vpadd_s32(vget_low_s32(vrow3q2), vget_high_s32(vrow3q2))); // vrow0q2 = vw20.u0+...+w23.u3 vw24.u4+...+w27.u7 vw30.u0+...+w33.u3 vw34.u4+...+w37.u7 vrow4q2 = vcombine_s32(vpadd_s32(vget_low_s32(vrow4q2), vget_high_s32(vrow4q2)), vpadd_s32(vget_low_s32(vrow5q2), vget_high_s32(vrow5q2))); // vrow0q2 = vw40.u0+...+w43.u3 vw44.u4+...+w47.u7 vw50.u0+...+w53.u3 vw54.u4+...+w57.u7 vrow6q2 = vcombine_s32(vpadd_s32(vget_low_s32(vrow6q2), vget_high_s32(vrow6q2)), vpadd_s32(vget_low_s32(vrow7q2), vget_high_s32(vrow7q2))); // vrow0q2 = vw60.u0+...+w63.u3 vw64.u4+...+w67.u7 vw70.u0+...+w73.u3 vw74.u4+...+w77.u7 vrow0q2 = vcombine_s32(vpadd_s32(vget_low_s32(vrow0q2), vget_high_s32(vrow0q2)), vpadd_s32(vget_low_s32(vrow2q2), vget_high_s32(vrow2q2))); // vrow0q2 = vw00.u0+...+w07.u7 vw10.u0+...+w17.u7 vw20.u0+...+w27.u7 vw30.u0+...+w37.u7 vrow4q2 = vcombine_s32(vpadd_s32(vget_low_s32(vrow4q2), vget_high_s32(vrow4q2)), vpadd_s32(vget_low_s32(vrow6q2), vget_high_s32(vrow6q2))); // vrow0q2 = vw40.u0+...+w47.u7 vw50.u0+...+w57.u7 vw60.u0+...+w67.u7 vw70.u0+...+w77.u7 result0123 = vaddq_s32(result0123, vrow0q2); result4567 = vaddq_s32(result4567, vrow4q2); u += 8; wi += 64; } { int8x8_t bias = vld1_s8(wi); // vw0 = b0 b1 b2 b3 b4 b5 b6 b7 int16x8_t scaled_bias = vmull_s8(bias, bias_scale); result0123 = vaddw_s16(result0123, vget_low_s16(scaled_bias)); result4567 = vaddw_s16(result4567, vget_high_s16(scaled_bias)); *v++ = vget_lane_s32(vget_low_s32 (result0123), 0) * *scales++; if (num_out > 1) *v++ = vget_lane_s32(vget_low_s32 (result0123), 1) * *scales++; if (num_out > 2) *v++ = vget_lane_s32(vget_high_s32(result0123), 0) * *scales++; if (num_out > 3) *v++ = vget_lane_s32(vget_high_s32(result0123), 1) * *scales++; if (num_out > 4) *v++ = vget_lane_s32(vget_low_s32 (result4567), 0) * *scales++; if (num_out > 5) *v++ = vget_lane_s32(vget_low_s32 (result4567), 1) * *scales++; if (num_out > 6) *v++ = vget_lane_s32(vget_high_s32(result4567), 0) * *scales++; if (num_out > 7) *v = vget_lane_s32(vget_high_s32(result4567), 1) * *scales; } } static void matrixDotVector(int dim1, int dim2, const int8_t* wi, const double* scales, const int8_t* u, double* v) { const int num_out = dim1; const int num_in = dim2 - 1; // Each call to a partial_func_ produces group_size outputs, except the // last one, which can produce less. const int rounded_num_in = IntSimdMatrix::Roundup(num_in, kNumInputsPerGroup); int group_size = kNumOutputsPerRegister * kMaxOutputRegisters; int output = 0; int w_step = (rounded_num_in + 1) * group_size; for (; output + group_size <= num_out; output += group_size) { PartialMatrixDotVector8(wi, scales, u, rounded_num_in, v, kNumOutputsPerRegister); wi += w_step; scales += group_size; v += group_size; } if (output < num_out) PartialMatrixDotVector8(wi, scales, u, rounded_num_in, v, num_out & (kNumOutputsPerRegister-1)); } const IntSimdMatrix IntSimdMatrix::intSimdMatrixNEON = { // Function. matrixDotVector, // Number of 32 bit outputs held in each register. kNumOutputsPerRegister, // Maximum number of registers that we will use to hold outputs. kMaxOutputRegisters, // Number of 8 bit inputs in the inputs register. kNumInputsPerRegister, // Number of inputs in each weight group. kNumInputsPerGroup }; } // namespace tesseract. #endif /* __ARM_NEON */