/********************************************************************** * File: points.h (Formerly coords.h) * Description: Coordinate class definitions. * Author: Ray Smith * * (C) Copyright 1991, Hewlett-Packard Ltd. ** Licensed under the Apache License, Version 2.0 (the "License"); ** you may not use this file except in compliance with the License. ** You may obtain a copy of the License at ** http://www.apache.org/licenses/LICENSE-2.0 ** Unless required by applicable law or agreed to in writing, software ** distributed under the License is distributed on an "AS IS" BASIS, ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ** See the License for the specific language governing permissions and ** limitations under the License. * **********************************************************************/ #ifndef POINTS_H #define POINTS_H #include "elst.h" #include "errcode.h" // for ASSERT_HOST #include // for DLLSYM #include // for sqrt, atan2 #include namespace tesseract { class FCOORD; ///integer coordinate class ICOORD { friend class FCOORD; public: ///empty constructor ICOORD() { xcoord = ycoord = 0; //default zero } ///constructor ///@param xin x value ///@param yin y value ICOORD(int16_t xin, int16_t yin) { xcoord = xin; ycoord = yin; } ///destructor ~ICOORD () = default; ///access function int16_t x() const { return xcoord; } ///access_function int16_t y() const { return ycoord; } ///rewrite function void set_x(int16_t xin) { xcoord = xin; //write new value } ///rewrite function void set_y(int16_t yin) { //value to set ycoord = yin; } /// Set from the given x,y, shrinking the vector to fit if needed. void set_with_shrink(int x, int y); ///find sq length float sqlength() const { return (float)(xcoord * xcoord + ycoord * ycoord); } ///find length float length() const { return std::sqrt(sqlength()); } ///sq dist between pts float pt_to_pt_sqdist(const ICOORD &pt) const { ICOORD gap; gap.xcoord = xcoord - pt.xcoord; gap.ycoord = ycoord - pt.ycoord; return gap.sqlength (); } ///Distance between pts float pt_to_pt_dist(const ICOORD &pt) const { return std::sqrt(pt_to_pt_sqdist(pt)); } ///find angle float angle() const { return (float)std::atan2(ycoord, xcoord); } ///test equality bool operator== (const ICOORD & other) const { return xcoord == other.xcoord && ycoord == other.ycoord; } ///test inequality bool operator!= (const ICOORD & other) const { return xcoord != other.xcoord || ycoord != other.ycoord; } ///rotate 90 deg anti friend ICOORD operator! (const ICOORD &); ///unary minus friend ICOORD operator- (const ICOORD &); ///add friend ICOORD operator+ (const ICOORD &, const ICOORD &); ///add friend ICOORD & operator+= (ICOORD &, const ICOORD &); ///subtract friend ICOORD operator- (const ICOORD &, const ICOORD &); ///subtract friend ICOORD & operator-= (ICOORD &, const ICOORD &); ///scalar product friend int32_t operator% (const ICOORD &, const ICOORD &); ///cross product friend int32_t operator *(const ICOORD &, const ICOORD &); ///multiply friend ICOORD operator *(const ICOORD &, int16_t); ///multiply friend ICOORD operator *(int16_t, const ICOORD &); ///multiply friend ICOORD & operator*= (ICOORD &, int16_t); ///divide friend ICOORD operator/ (const ICOORD &, int16_t); ///divide friend ICOORD & operator/= (ICOORD &, int16_t); ///rotate ///@param vec by vector void rotate(const FCOORD& vec); /// Setup for iterating over the pixels in a vector by the well-known /// Bresenham rendering algorithm. /// Starting with major/2 in the accumulator, on each step move by /// major_step, and then add minor to the accumulator. When /// accumulator >= major subtract major and also move by minor_step. void setup_render(ICOORD* major_step, ICOORD* minor_step, int* major, int* minor) const; // Writes to the given file. Returns false in case of error. bool Serialize(FILE* fp) const; // Reads from the given file. Returns false in case of error. // If swap is true, assumes a big/little-endian swap is needed. bool DeSerialize(bool swap, FILE* fp); protected: int16_t xcoord; ///< x value int16_t ycoord; ///< y value }; class ICOORDELT : public ELIST_LINK, public ICOORD //embedded coord list { public: ///empty constructor ICOORDELT() = default; ///constructor from ICOORD ICOORDELT (ICOORD icoord):ICOORD (icoord) { } ///constructor ///@param xin x value ///@param yin y value ICOORDELT(int16_t xin, int16_t yin) { xcoord = xin; ycoord = yin; } static ICOORDELT* deep_copy(const ICOORDELT* src) { auto* elt = new ICOORDELT; *elt = *src; return elt; } }; ELISTIZEH (ICOORDELT) class TESS_API FCOORD { public: ///empty constructor FCOORD() = default; ///constructor ///@param xvalue x value ///@param yvalue y value FCOORD(float xvalue, float yvalue) { xcoord = xvalue; //set coords ycoord = yvalue; } FCOORD( //make from ICOORD ICOORD icoord) { //coords to set xcoord = icoord.xcoord; ycoord = icoord.ycoord; } float x() const { //get coords return xcoord; } float y() const { return ycoord; } ///rewrite function void set_x(float xin) { xcoord = xin; //write new value } ///rewrite function void set_y(float yin) { //value to set ycoord = yin; } ///find sq length float sqlength() const { return xcoord * xcoord + ycoord * ycoord; } ///find length float length() const { return std::sqrt(sqlength()); } ///sq dist between pts float pt_to_pt_sqdist(const FCOORD &pt) const { FCOORD gap; gap.xcoord = xcoord - pt.xcoord; gap.ycoord = ycoord - pt.ycoord; return gap.sqlength (); } ///Distance between pts float pt_to_pt_dist(const FCOORD &pt) const { return std::sqrt(pt_to_pt_sqdist(pt)); } ///find angle float angle() const { return std::atan2(ycoord, xcoord); } // Returns the standard feature direction corresponding to this. // See binary_angle_plus_pi below for a description of the direction. uint8_t to_direction() const; // Sets this with a unit vector in the given standard feature direction. void from_direction(uint8_t direction); // Converts an angle in radians (from ICOORD::angle or FCOORD::angle) to a // standard feature direction as an unsigned angle in 256ths of a circle // measured anticlockwise from (-1, 0). static uint8_t binary_angle_plus_pi(double angle); // Inverse of binary_angle_plus_pi returns an angle in radians for the // given standard feature direction. static double angle_from_direction(uint8_t direction); // Returns the point on the given line nearest to this, ie the point such // that the vector point->this is perpendicular to the line. // The line is defined as a line_point and a dir_vector for its direction. // dir_vector need not be a unit vector. FCOORD nearest_pt_on_line(const FCOORD& line_point, const FCOORD& dir_vector) const; ///Convert to unit vec bool normalise(); ///test equality bool operator== (const FCOORD & other) { return xcoord == other.xcoord && ycoord == other.ycoord; } ///test inequality bool operator!= (const FCOORD & other) { return xcoord != other.xcoord || ycoord != other.ycoord; } ///rotate 90 deg anti friend FCOORD operator! (const FCOORD &); ///unary minus friend FCOORD operator- (const FCOORD &); ///add friend FCOORD operator+ (const FCOORD &, const FCOORD &); ///add friend FCOORD & operator+= (FCOORD &, const FCOORD &); ///subtract friend FCOORD operator- (const FCOORD &, const FCOORD &); ///subtract friend FCOORD & operator-= (FCOORD &, const FCOORD &); ///scalar product friend float operator% (const FCOORD &, const FCOORD &); ///cross product friend float operator *(const FCOORD &, const FCOORD &); ///multiply friend FCOORD operator *(const FCOORD &, float); ///multiply friend FCOORD operator *(float, const FCOORD &); ///multiply friend FCOORD & operator*= (FCOORD &, float); ///divide friend FCOORD operator/ (const FCOORD &, float); ///rotate ///@param vec by vector void rotate(const FCOORD vec); // unrotate - undo a rotate(vec) // @param vec by vector void unrotate(const FCOORD &vec); ///divide friend FCOORD & operator/= (FCOORD &, float); private: float xcoord; //2 floating coords float ycoord; }; /********************************************************************** * operator! * * Rotate an ICOORD 90 degrees anticlockwise. **********************************************************************/ inline ICOORD operator! ( //rotate 90 deg anti const ICOORD & src //thing to rotate ) { ICOORD result; //output result.xcoord = -src.ycoord; result.ycoord = src.xcoord; return result; } /********************************************************************** * operator- * * Unary minus of an ICOORD. **********************************************************************/ inline ICOORD operator- ( //unary minus const ICOORD & src //thing to minus ) { ICOORD result; //output result.xcoord = -src.xcoord; result.ycoord = -src.ycoord; return result; } /********************************************************************** * operator+ * * Add 2 ICOORDS. **********************************************************************/ inline ICOORD operator+ ( //sum vectors const ICOORD & op1, //operands const ICOORD & op2) { ICOORD sum; //result sum.xcoord = op1.xcoord + op2.xcoord; sum.ycoord = op1.ycoord + op2.ycoord; return sum; } /********************************************************************** * operator+= * * Add 2 ICOORDS. **********************************************************************/ inline ICOORD & operator+= ( //sum vectors ICOORD & op1, //operands const ICOORD & op2) { op1.xcoord += op2.xcoord; op1.ycoord += op2.ycoord; return op1; } /********************************************************************** * operator- * * Subtract 2 ICOORDS. **********************************************************************/ inline ICOORD operator- ( //subtract vectors const ICOORD & op1, //operands const ICOORD & op2) { ICOORD sum; //result sum.xcoord = op1.xcoord - op2.xcoord; sum.ycoord = op1.ycoord - op2.ycoord; return sum; } /********************************************************************** * operator-= * * Subtract 2 ICOORDS. **********************************************************************/ inline ICOORD & operator-= ( //subtract vectors ICOORD & op1, //operands const ICOORD & op2) { op1.xcoord -= op2.xcoord; op1.ycoord -= op2.ycoord; return op1; } /********************************************************************** * operator% * * Scalar product of 2 ICOORDS. **********************************************************************/ inline int32_t operator% ( //scalar product const ICOORD & op1, //operands const ICOORD & op2) { return op1.xcoord * op2.xcoord + op1.ycoord * op2.ycoord; } /********************************************************************** * operator* * * Cross product of 2 ICOORDS. **********************************************************************/ inline int32_t operator *( //cross product const ICOORD &op1, //operands const ICOORD &op2) { return op1.xcoord * op2.ycoord - op1.ycoord * op2.xcoord; } /********************************************************************** * operator* * * Scalar multiply of an ICOORD. **********************************************************************/ inline ICOORD operator *( //scalar multiply const ICOORD &op1, //operands int16_t scale) { ICOORD result; //output result.xcoord = op1.xcoord * scale; result.ycoord = op1.ycoord * scale; return result; } inline ICOORD operator *( //scalar multiply int16_t scale, const ICOORD &op1 //operands ) { ICOORD result; //output result.xcoord = op1.xcoord * scale; result.ycoord = op1.ycoord * scale; return result; } /********************************************************************** * operator*= * * Scalar multiply of an ICOORD. **********************************************************************/ inline ICOORD & operator*= ( //scalar multiply ICOORD & op1, //operands int16_t scale) { op1.xcoord *= scale; op1.ycoord *= scale; return op1; } /********************************************************************** * operator/ * * Scalar divide of an ICOORD. **********************************************************************/ inline ICOORD operator/ ( //scalar divide const ICOORD & op1, //operands int16_t scale) { ICOORD result; //output result.xcoord = op1.xcoord / scale; result.ycoord = op1.ycoord / scale; return result; } /********************************************************************** * operator/= * * Scalar divide of an ICOORD. **********************************************************************/ inline ICOORD & operator/= ( //scalar divide ICOORD & op1, //operands int16_t scale) { op1.xcoord /= scale; op1.ycoord /= scale; return op1; } /********************************************************************** * ICOORD::rotate * * Rotate an ICOORD by the given (normalized) (cos,sin) vector. **********************************************************************/ inline void ICOORD::rotate( //rotate by vector const FCOORD& vec) { auto tmp = static_cast(std::floor(xcoord * vec.x() - ycoord * vec.y() + 0.5f)); ycoord = static_cast(std::floor(ycoord * vec.x() + xcoord * vec.y() + 0.5f)); xcoord = tmp; } /********************************************************************** * operator! * * Rotate an FCOORD 90 degrees anticlockwise. **********************************************************************/ inline FCOORD operator! ( //rotate 90 deg anti const FCOORD & src //thing to rotate ) { FCOORD result; //output result.xcoord = -src.ycoord; result.ycoord = src.xcoord; return result; } /********************************************************************** * operator- * * Unary minus of an FCOORD. **********************************************************************/ inline FCOORD operator- ( //unary minus const FCOORD & src //thing to minus ) { FCOORD result; //output result.xcoord = -src.xcoord; result.ycoord = -src.ycoord; return result; } /********************************************************************** * operator+ * * Add 2 FCOORDS. **********************************************************************/ inline FCOORD operator+ ( //sum vectors const FCOORD & op1, //operands const FCOORD & op2) { FCOORD sum; //result sum.xcoord = op1.xcoord + op2.xcoord; sum.ycoord = op1.ycoord + op2.ycoord; return sum; } /********************************************************************** * operator+= * * Add 2 FCOORDS. **********************************************************************/ inline FCOORD & operator+= ( //sum vectors FCOORD & op1, //operands const FCOORD & op2) { op1.xcoord += op2.xcoord; op1.ycoord += op2.ycoord; return op1; } /********************************************************************** * operator- * * Subtract 2 FCOORDS. **********************************************************************/ inline FCOORD operator- ( //subtract vectors const FCOORD & op1, //operands const FCOORD & op2) { FCOORD sum; //result sum.xcoord = op1.xcoord - op2.xcoord; sum.ycoord = op1.ycoord - op2.ycoord; return sum; } /********************************************************************** * operator-= * * Subtract 2 FCOORDS. **********************************************************************/ inline FCOORD & operator-= ( //subtract vectors FCOORD & op1, //operands const FCOORD & op2) { op1.xcoord -= op2.xcoord; op1.ycoord -= op2.ycoord; return op1; } /********************************************************************** * operator% * * Scalar product of 2 FCOORDS. **********************************************************************/ inline float operator% ( //scalar product const FCOORD & op1, //operands const FCOORD & op2) { return op1.xcoord * op2.xcoord + op1.ycoord * op2.ycoord; } /********************************************************************** * operator* * * Cross product of 2 FCOORDS. **********************************************************************/ inline float operator *( //cross product const FCOORD &op1, //operands const FCOORD &op2) { return op1.xcoord * op2.ycoord - op1.ycoord * op2.xcoord; } /********************************************************************** * operator* * * Scalar multiply of an FCOORD. **********************************************************************/ inline FCOORD operator *( //scalar multiply const FCOORD &op1, //operands float scale) { FCOORD result; //output result.xcoord = op1.xcoord * scale; result.ycoord = op1.ycoord * scale; return result; } inline FCOORD operator *( //scalar multiply float scale, const FCOORD &op1 //operands ) { FCOORD result; //output result.xcoord = op1.xcoord * scale; result.ycoord = op1.ycoord * scale; return result; } /********************************************************************** * operator*= * * Scalar multiply of an FCOORD. **********************************************************************/ inline FCOORD & operator*= ( //scalar multiply FCOORD & op1, //operands float scale) { op1.xcoord *= scale; op1.ycoord *= scale; return op1; } /********************************************************************** * operator/ * * Scalar divide of an FCOORD. **********************************************************************/ inline FCOORD operator/ ( //scalar divide const FCOORD & op1, //operands float scale) { FCOORD result; //output ASSERT_HOST(scale != 0.0f); result.xcoord = op1.xcoord / scale; result.ycoord = op1.ycoord / scale; return result; } /********************************************************************** * operator/= * * Scalar divide of an FCOORD. **********************************************************************/ inline FCOORD & operator/= ( //scalar divide FCOORD & op1, //operands float scale) { ASSERT_HOST(scale != 0.0f); op1.xcoord /= scale; op1.ycoord /= scale; return op1; } /********************************************************************** * rotate * * Rotate an FCOORD by the given (normalized) (cos,sin) vector. **********************************************************************/ inline void FCOORD::rotate( //rotate by vector const FCOORD vec) { float tmp; tmp = xcoord * vec.x () - ycoord * vec.y (); ycoord = ycoord * vec.x () + xcoord * vec.y (); xcoord = tmp; } inline void FCOORD::unrotate(const FCOORD& vec) { rotate(FCOORD(vec.x(), -vec.y())); } } // namespace tesseract #endif