/////////////////////////////////////////////////////////////////////// // File: plumbing.h // Description: Base class for networks that organize other networks // eg series or parallel. // Author: Ray Smith // // (C) Copyright 2014, Google Inc. // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /////////////////////////////////////////////////////////////////////// #ifndef TESSERACT_LSTM_PLUMBING_H_ #define TESSERACT_LSTM_PLUMBING_H_ #include "genericvector.h" #include "matrix.h" #include "network.h" namespace tesseract { // Holds a collection of other networks and forwards calls to each of them. class Plumbing : public Network { public: // ni_ and no_ will be set by AddToStack. explicit Plumbing(const std::string& name); ~Plumbing() override = default; // Returns the required shape input to the network. StaticShape InputShape() const override { return stack_[0]->InputShape(); } STRING spec() const override { return "Sub-classes of Plumbing must implement spec()!"; } // Returns true if the given type is derived from Plumbing, and thus contains // multiple sub-networks that can have their own learning rate. bool IsPlumbingType() const override { return true; } // Suspends/Enables training by setting the training_ flag. Serialize and // DeSerialize only operate on the run-time data if state is false. void SetEnableTraining(TrainingState state) override; // Sets flags that control the action of the network. See NetworkFlags enum // for bit values. void SetNetworkFlags(uint32_t flags) override; // Sets up the network for training. Initializes weights using weights of // scale `range` picked according to the random number generator `randomizer`. // Note that randomizer is a borrowed pointer that should outlive the network // and should not be deleted by any of the networks. // Returns the number of weights initialized. int InitWeights(float range, TRand* randomizer) override; // Recursively searches the network for softmaxes with old_no outputs, // and remaps their outputs according to code_map. See network.h for details. int RemapOutputs(int old_no, const std::vector& code_map) override; // Converts a float network to an int network. void ConvertToInt() override; // Provides a pointer to a TRand for any networks that care to use it. // Note that randomizer is a borrowed pointer that should outlive the network // and should not be deleted by any of the networks. void SetRandomizer(TRand* randomizer) override; // Adds the given network to the stack. virtual void AddToStack(Network* network); // Sets needs_to_backprop_ to needs_backprop and returns true if // needs_backprop || any weights in this network so the next layer forward // can be told to produce backprop for this layer if needed. bool SetupNeedsBackprop(bool needs_backprop) override; // Returns an integer reduction factor that the network applies to the // time sequence. Assumes that any 2-d is already eliminated. Used for // scaling bounding boxes of truth data. // WARNING: if GlobalMinimax is used to vary the scale, this will return // the last used scale factor. Call it before any forward, and it will return // the minimum scale factor of the paths through the GlobalMinimax. int XScaleFactor() const override; // Provides the (minimum) x scale factor to the network (of interest only to // input units) so they can determine how to scale bounding boxes. void CacheXScaleFactor(int factor) override; // Provides debug output on the weights. void DebugWeights() override; // Returns the current stack. const PointerVector& stack() const { return stack_; } // Returns a set of strings representing the layer-ids of all layers below. TESS_API void EnumerateLayers(const STRING* prefix, std::vector* layers) const; // Returns a pointer to the network layer corresponding to the given id. TESS_API Network* GetLayer(const char* id) const; // Returns the learning rate for a specific layer of the stack. float LayerLearningRate(const char* id) { const float* lr_ptr = LayerLearningRatePtr(id); ASSERT_HOST(lr_ptr != nullptr); return *lr_ptr; } // Scales the learning rate for a specific layer of the stack. void ScaleLayerLearningRate(const char* id, double factor) { float* lr_ptr = LayerLearningRatePtr(id); ASSERT_HOST(lr_ptr != nullptr); *lr_ptr *= factor; } // Returns a pointer to the learning rate for the given layer id. TESS_API float* LayerLearningRatePtr(const char* id); // Writes to the given file. Returns false in case of error. bool Serialize(TFile* fp) const override; // Reads from the given file. Returns false in case of error. bool DeSerialize(TFile* fp) override; // Updates the weights using the given learning rate, momentum and adam_beta. // num_samples is used in the adam computation iff use_adam_ is true. void Update(float learning_rate, float momentum, float adam_beta, int num_samples) override; // Sums the products of weight updates in *this and other, splitting into // positive (same direction) in *same and negative (different direction) in // *changed. void CountAlternators(const Network& other, double* same, double* changed) const override; protected: // The networks. PointerVector stack_; // Layer-specific learning rate iff network_flags_ & NF_LAYER_SPECIFIC_LR. // One element for each element of stack_. GenericVector learning_rates_; }; } // namespace tesseract. #endif // TESSERACT_LSTM_PLUMBING_H_