/* GNU Ocrad - Optical Character Recognition program Copyright (C) 2003-2019 Antonio Diaz Diaz. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include #include #include #include #include "common.h" #include "rectangle.h" #include "bitmap.h" #include "blob.h" #include "profile.h" Profile::Profile( const Bitmap & bm_, const Type t ) : bm( bm_ ), type( t ), limit_( -1 ), max_( -1 ), min_( -1 ), mean_( -1 ), isconcave_( -1 ), isconvex_( -1 ), isflat_( -1 ), isflats_( -1 ), ispit_( -1 ), istpit_( -1 ), isupit_( -1 ), isvpit_( -1 ), istip_( -1 ) {} void Profile::initialize() { switch( type ) { case left : data.resize( bm.height() ); limit_ = bm.width(); for( int row = bm.top(); row <= bm.bottom(); ++row ) { int j = bm.left(); while( j <= bm.right() && !bm.get_bit( row, j ) ) ++j; data[row-bm.top()] = j - bm.left(); } break; case top : data.resize( bm.width() ); limit_ = bm.height(); for( int col = bm.left(); col <= bm.right(); ++col ) { int j = bm.top(); while( j <= bm.bottom() && !bm.get_bit( j, col ) ) ++j; data[col-bm.left()] = j - bm.top(); } break; case right : data.resize( bm.height() ); limit_ = bm.width(); for( int row = bm.top(); row <= bm.bottom(); ++row ) { int j = bm.right(); while( j >= bm.left() && !bm.get_bit( row, j ) ) --j; data[row-bm.top()] = bm.right() - j; } break; case bottom : data.resize( bm.width() ); limit_ = bm.height(); for( int col = bm.left(); col <= bm.right(); ++col ) { int j = bm.bottom(); while( j >= bm.top() && !bm.get_bit( j, col ) ) --j; data[col-bm.left()] = bm.bottom() - j; } break; case height : data.resize( bm.width() ); limit_ = bm.height(); for( int col = bm.left(); col <= bm.right(); ++col ) { int u = bm.top(), d = bm.bottom(); while( u <= d && !bm.get_bit( u, col ) ) ++u; while( u <= d && !bm.get_bit( d, col ) ) --d; data[col-bm.left()] = d - u + 1; } break; case width : data.resize( bm.height() ); limit_ = bm.width(); for( int row = bm.top(); row <= bm.bottom(); ++row ) { int l = bm.left(), r = bm.right(); while( l <= r && !bm.get_bit( row, l ) ) ++l; while( l <= r && !bm.get_bit( row, r ) ) --r; data[row-bm.top()] = r - l + 1; } break; } } int Profile::mean() { if( mean_ < 0 ) { if( limit_ < 0 ) initialize(); mean_ = 0; for( int i = 0; i < samples(); ++i ) mean_ += data[i]; if( samples() > 1 ) mean_ /= samples(); } return mean_; } int Profile::max() { if( max_ < 0 ) { if( limit_ < 0 ) initialize(); max_ = data[0]; for( int i = 1; i < samples(); ++i ) if( data[i] > max_ ) max_ = data[i]; } return max_; } int Profile::max( const int l, int r ) { if( limit_ < 0 ) initialize(); if( r < 0 ) r = samples() - 1; int m = 0; for( int i = l; i <= r; ++i ) if( data[i] > m ) m = data[i]; return m; } int Profile::min() { if( min_ < 0 ) { if( limit_ < 0 ) initialize(); min_ = data[0]; for( int i = 1; i < samples(); ++i ) if( data[i] < min_ ) min_ = data[i]; } return min_; } int Profile::min( const int l, int r ) { if( limit_ < 0 ) initialize(); if( r < 0 ) r = samples() - 1; int m = limit_; for( int i = l; i <= r; ++i ) if( data[i] < m ) m = data[i]; return m; } int Profile::operator[]( int i ) { if( limit_ < 0 ) initialize(); if( i < 0 ) i = 0; else if( i >= samples() ) i = samples() - 1; return data[i]; } int Profile::area( const int l, int r ) { if( limit_ < 0 ) initialize(); if( r < 0 || r >= samples() ) r = samples() - 1; int a = 0; for( int i = l; i <= r; ++i ) a += data[i]; return a; } bool Profile::increasing( int i, const int min_delta ) { if( limit_ < 0 ) initialize(); if( i < 0 || i > samples() - 2 || data[samples()-1] - data[i] < min_delta ) return false; while( ++i < samples() ) if( data[i] < data[i-1] ) return false; return true; } bool Profile::decreasing( int i, int end ) { if( limit_ < 0 ) initialize(); const int dnoise = ( samples() / 20 ) + 1; // domain noise const int rnoise = ( std::min( samples(), limit_ ) / 20 ) + 1; // range noise if( end < 0 || end > samples() - dnoise ) end = samples() - dnoise; if( i < 0 || end - i <= 2 * rnoise || data[i] - data[end-1] <= rnoise ) return false; while( ++i < end ) if( data[i] > data[i-1] ) return false; return true; } bool Profile::isconcave() { if( isconcave_ < 0 ) { isconcave_ = false; if( limit_ < 0 ) initialize(); if( samples() < 5 ) return isconcave_; int dmax = -1, l = 0, r = 0; for( int i = pos( 10 ); i <= pos( 90 ); ++i ) { if( data[i] > dmax ) { dmax = data[i]; l = r = i; } else if( data[i] == dmax ) { r = i; } } if( l > r || l < pos( 25 ) || r > pos( 75 ) ) return isconcave_; if( data[pos(10)] >= dmax || data[pos(90)] >= dmax ) return isconcave_; int imax = ( l + r ) / 2; for( int i = pos( 10 ); i < imax; ++i ) if( data[i] > data[i+1] ) return isconcave_; for( int i = pos( 90 ); i > imax; --i ) if( data[i] > data[i-1] ) return isconcave_; isconcave_ = true; } return isconcave_; } bool Profile::isconvex() { if( isconvex_ < 0 ) { isconvex_ = false; if( limit_ < 0 ) initialize(); if( samples() < 9 || limit_ < 5 ) return isconvex_; int min = limit_, min_begin = 0, min_end = 0; int lmin = limit_, rmax = -limit_, l = 0, r = 0; for( int i = 1; i < samples(); ++i ) { int d = data[i] - data[i-1]; if( d < lmin ) { lmin = d; l = i - 1; } if( d >= rmax ) { rmax = d; r = i; } if( data[i] <= min ) { min_end = i; if( data[i] < min ) { min = data[i]; min_begin = i; } } } if( l >= r || l >= pos( 25 ) || r <= pos( 75 ) ) return isconvex_; if( lmin >= 0 || rmax <= 0 || data[l] < 2 || data[r] < 2 || 3 * ( data[l] + data[r] ) <= std::min( samples(), limit_ ) ) return isconvex_; if( 3 * ( min_end - min_begin + 1 ) > 2 * samples() ) return isconvex_; if( 2 * l >= min_begin || 2 * r <= min_end + samples() - 1 ) return isconvex_; if( min_begin < pos( 10 ) || min_end > pos( 90 ) ) return isconvex_; const int noise = ( std::min( samples(), limit_ ) / 30 ) + 1; int dmax = -limit_; for( int i = l + 1; i <= r; ++i ) { if( i >= min_begin && i <= min_end ) { if( data[i] <= noise ) continue; else return isconvex_; } int d = data[i] - data[i-1]; if( d == 0 ) continue; if( d > dmax ) { if( std::abs( d ) <= noise ) ++dmax; else dmax = d; } else if( d < dmax - noise ) return isconvex_; } if( 2 * ( min_end - min_begin + 1 ) < samples() ) { int varea = ( min_begin - l + 1 ) * data[l] / 2; varea += ( r - min_end + 1 ) * data[r] / 2; if( this->area( l, min_begin - 1 ) + this->area( min_end + 1, r ) >= varea ) return isconvex_; } isconvex_ = true; } return isconvex_; } bool Profile::isflat() { if( isflat_ < 0 ) { isflat_ = false; if( limit_ < 0 ) initialize(); if( samples() < 10 ) return isflat_; int mn = data[samples()/2], mx = mn; for( int i = 1; i < samples() - 1; ++i ) { int d = data[i]; if( d < mn ) mn = d; else if( d > mx ) mx = d; } isflat_ = (bool)( mx - mn <= 1 + ( samples() / 30 ) ); } return isflat_; } bool Profile::isflats() { if( isflats_ < 0 ) { isflats_ = false; if( limit_ < 0 ) initialize(); if( samples() < 12 ) return isflats_; const int s1 = std::max( pos( 15 ), 3 ); const int s2 = std::min( pos( 85 ), samples() - 4 ); int mn = -1, mx = 0; for( int i = s1 + 2; i < s2; ++i ) if( data[i-1] == data[i] ) { mn = mx = data[i]; break; } if( mn < 0 ) return isflats_; for( int i = 1; i <= s1; ++i ) if( data[i] > mx ) mx = data[i]; for( int i = s1 + 1; i < s2; ++i ) { int d = data[i]; if( d < mn ) mn = d; else if( d > mx ) mx = d; } for( int i = s2; i < samples() - 1; ++i ) if( data[i] > mx ) mx = data[i]; isflats_ = (bool)( mx - mn <= 1 + ( samples() / 30 ) ); } return isflats_; } bool Profile::ispit() { if( ispit_ < 0 ) { ispit_ = false; if( limit_ < 0 ) initialize(); if( samples() < 5 ) return ispit_; const int noise = ( std::min( samples(), limit_ ) / 25 ) + 1; for( int i = 0; i < noise; ++i ) if( data[i] <= noise - i || data[samples()-i-1] <= noise - i ) return ispit_; const int dmin = min(), dmax = limit_ / 2; int begin = 0, end = 0, i, ref; for( i = 0, ref = dmax; i < samples(); ++i ) { int d = data[i]; if( d == dmin ) { begin = i; break; } if( d < ref ) ref = d; else if( d > ref + noise && ref < dmax ) return ispit_; } if( begin < 2 || begin > samples() - 3 ) return ispit_; for( i = samples() - 1, ref = dmax; i >= begin; --i ) { int d = data[i]; if( d == dmin ) { end = i; break; } if( d < ref ) ref = d; else if( d > ref + noise && ref < dmax ) return ispit_; } if( end < begin || end > samples() - 3 ) return ispit_; for( i = begin + 1; i < end; ++i ) if( data[i] > dmin + noise ) return ispit_; ispit_ = true; } return ispit_; } bool Profile::iscpit( const int cpos ) { if( limit_ < 0 ) initialize(); if( samples() < 5 || cpos < 25 || cpos > 75 ) return false; const int mid = ( ( samples() - 1 ) * cpos ) / 100; const int iend = std::min( samples() / 4, std::min( mid, samples() - mid ) ); const int th = ( ( mean() < 2 ) ? 2 : mean() ); int imin = -1; for( int i = 0; i < iend; ++i ) { if( data[mid+i] < th ) { imin = mid + i; break; } if( data[mid-i-1] < th ) { imin = mid - i - 1; break; } } if( imin < 0 ) return false; for( int i = imin + 1; i < samples(); ++i ) if( data[i] > th ) { for( int j = imin - 1; j >= 0; --j ) if( data[j] > th ) return true; break; } return false; } bool Profile::istpit() { if( istpit_ < 0 ) { if( limit_ < 0 ) initialize(); if( limit_ < 5 || samples() < 5 || !ispit() ) { istpit_ = false; return istpit_; } const int noise = ( std::min( samples(), limit_ ) / 30 ) + 1; int l = -1, r = 0; for( int i = 0; i < samples(); ++i ) if( data[i] <= noise ) { r = i; if( l < 0 ) l = i; } istpit_ = (bool)( l > 0 && 4 * ( r - l + 1 ) < samples() ); } return istpit_; } bool Profile::isupit() { if( isupit_ < 0 ) { isupit_ = false; if( limit_ < 0 ) initialize(); if( samples() < 5 ) return isupit_; int th = ( mean() < 2 && range() > 2 ) ? 2 : mean(); int status = 0, ucount = 0, lcount = 0, umean =0, lmean = 0; for( int i = 0; i < samples(); ++i ) { int d = data[i]; switch( status ) { case 0: if( d < th ) { if( i < pos( 25 ) || i > pos( 70 ) ) return isupit_; status = 1; break; } if( d > th ) { ++ucount; umean += d; } break; case 1: if( d > th ) { if( i < pos( 30 ) || i > pos( 75 ) ) return isupit_; status = 2; break; } if( d < th ) { ++lcount; lmean += d; } break; case 2: if( d < th ) return isupit_; if( d > th ) { ++ucount; umean += d; } break; } } if( ucount > 1 ) umean /= ucount; if( lcount > 1 ) lmean /= lcount; isupit_ = (bool)( status == 2 && umean - lmean > range() / 2 ); } return isupit_; } bool Profile::isvpit() { if( isvpit_ < 0 ) { if( limit_ < 0 ) initialize(); if( limit_ < 5 || samples() < 5 || !ispit() ) { isvpit_ = false; return isvpit_; } const int noise = limit_ / 20; const int level = ( limit_ / 10 ) + 2; int ll = -1, ln = -1, rl = -1, rn = -1; for( int i = 0; i < samples(); ++i ) if( data[i] <= level ) { rl = i; if( ll < 0 ) ll = i; if( data[i] <= noise ) { rn = i; if( ln < 0 ) ln = i; } } const int wl = rl - ll + 1, wn = rn - ln + 1; isvpit_ = (bool)( ln > 0 && 2 * wl <= samples() + 1 && wl - wn <= 2 * ( level - noise ) ); } return isvpit_; } bool Profile::istip() { if( istip_ < 0 ) { istip_ = false; if( limit_ < 0 ) initialize(); if( samples() < 5 ) return istip_; int th = ( mean() < 2 && range() > 2 ) ? 2 : mean(); if( th < 2 ) ++th; int lth = data[0], rth = data[samples()-1]; int begin = 0, end = samples() - 1; const int tries = std::max( 2, ( samples() + 5 ) / 10 ); for( int i = 1; i < tries; ++i ) { if( data[i] < lth ) { lth = data[i]; begin = i; } if( data[samples()-1-i] < rth ) { rth = data[samples()-1-i]; end = samples() - 1 - i; } } if( lth >= th || rth >= th ) return istip_; if( 3 * lth >= 2 * range() || 3 * rth >= 2 * range() ) return istip_; th = std::max( lth, rth ); int status = 0; for( int i = begin + 1; i < end; ++i ) switch( status ) { case 0: if( data[i] > th + 1 ) status = 1; break; case 1: if( data[i] > th + 1 ) status = 2; else status = 0; break; case 2: if( data[i] <= th ) status = 3; break; case 3: if( data[i] > th + 1 ) return istip_; } istip_ = (bool)( status >= 2 ); } return istip_; } bool Profile::isctip( const int cpos ) { if( limit_ < 0 ) initialize(); if( samples() < 5 || cpos < 25 || cpos > 75 ) return false; const int mid = ( ( samples() - 1 ) * cpos ) / 100; const int iend = std::min( samples() / 4, std::min( mid, samples() - mid ) ); int th = std::max( 2, std::min( mean(), limit_ / 3 ) ); int imax = -1; for( int i = 0; i < iend; ++i ) { if( data[mid+i] > th ) { imax = mid + i; break; } if( data[mid-i-1] > th ) { imax = mid - i - 1; break; } } if( imax < 0 && mean() == 0 ) { --th; for( int i = 0; i < iend; ++i ) { if( data[mid+i] > th ) { imax = mid + i; break; } if( data[mid-i-1] > th ) { imax = mid - i - 1; break; } } } if( imax < 0 ) return false; th = std::max( th, data[imax] / 2 ); for( int i = imax + 1; i < samples(); ++i ) if( data[i] < th ) { for( int j = imax - 1; j >= 0; --j ) if( data[j] < th ) return true; break; } return false; } bool Profile::isltip() { if( limit_ < 0 ) initialize(); if( samples() < 5 ) return false; const int noise = ( samples() / 30 ) + 1; if( data[0] <= noise ) return false; const int dmin = min(); int begin = 0, ref = limit_; for( int i = 0; i < samples() - noise; ++i ) { int d = data[i]; if( d == dmin ) { begin = i; break; } if( d < ref ) ref = d; else if( d > ref + noise ) return false; } if( begin <= noise || 2 * begin > samples() ) return false; return true; } bool Profile::isrtip() { if( limit_ < 0 ) initialize(); if( samples() < 5 ) return false; const int noise = ( samples() / 30 ) + 1; if( data[samples()-1] <= noise ) return false; const int dmin = min(); int begin = 0, ref = limit_; for( int i = samples() - 1; i >= noise; --i ) { int d = data[i]; if( d == dmin ) { begin = samples() - 1 - i; break; } if( d < ref ) ref = d; else if( d > ref + noise ) return false; } if( begin <= noise || 2 * begin > samples() ) return false; return true; } int Profile::imaximum() { if( limit_ < 0 ) initialize(); const int margin = ( samples() / 30 ) + 1; int mbegin = 0, mend, mvalue = 0; for( int i = margin; i < samples() - margin; ++i ) if( data[i] > mvalue ) { mvalue = data[i]; mbegin = i; } for( mend = mbegin + 1; mend < samples(); ++mend ) if( data[mend] < mvalue ) break; return ( mbegin + mend - 1 ) / 2; } int Profile::iminimum( const int m, int th ) { if( limit_ < 0 ) initialize(); const int margin = ( samples() / 30 ) + 1; if( samples() < 2 * margin ) return 0; if( th < 2 ) th = ( mean() < 2 ) ? 2 : mean(); int minima = 0, status = 0; int begin = 0, end, value = limit_ + 1; for( end = margin; end < samples() - margin; ++end ) { if( status == 0 ) { if( data[end] < th ) { status = 1; ++minima; begin = end; } } else if( data[end] > th ) { if( minima == m + 1 ) { --end; break; } else status = 0; } } if( end >= samples() ) --end; if( minima != m + 1 ) return 0; for( int i = begin; i <= end; ++i ) if( data[i] < value ) { value = data[i]; begin = i; } for( ; end >= begin; --end ) if( data[end] == value ) break; return ( begin + end ) / 2; } int Profile::minima( int th ) { if( limit_ < 0 ) initialize(); if( !samples() ) return 0; if( th < 1 ) th = ( mean() < 2 ) ? 2 : mean(); const int noise = limit_ / 40; const int dth = th - ( ( noise + 1 ) / 2 ), uth = th + ( noise / 2 ); if( dth < 1 ) return 1; int minima = ( data[0] < dth ) ? 1 : 0; int status = ( minima ) ? 1 : 0; for( int i = 1; i < samples(); ++i ) switch( status ) { case 0: if( data[i] < dth ) { status = 1; ++minima; } break; case 1: if( data[i] > uth ) status = 0; break; } return minima; } bool Profile::straight( int * const dyp ) { if( limit_ < 0 ) initialize(); if( samples() < 5 ) return false; const int xl = ( samples() / 30 ) + 1, yl = ( data[xl] + data[xl+1] ) / 2 ; const int xr = samples() - xl - 1, yr = ( data[xr-1] + data[xr] ) / 2 ; const int dx = xr - xl, dy = yr - yl; if( dx <= 0 ) return false; const int dmax = dx * ( ( samples() / 20 ) + 2 ); int faults = samples() / 10; for( int i = 0; i < samples(); ++i ) { int y = ( dx * yl ) + ( ( i - xl ) * dy ); int d = std::abs( ( dx * data[i] ) - y ); if( d >= dmax && ( ( dx * data[i] ) < y || ( i >= xl && i <= xr ) ) ) if( d > dmax || ( d == dmax && --faults < 0 ) ) return false; } if( dyp ) *dyp = dy; return true; }