/* Rational - Rational number class with overflow detection Copyright (C) 2005-2019 Antonio Diaz Diaz. This library is free software. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. */ #include #include #include #include #include #include "rational.h" #ifndef LLONG_MAX #define LLONG_MAX 0x7FFFFFFFFFFFFFFFLL #endif #ifndef LLONG_MIN #define LLONG_MIN (-LLONG_MAX - 1LL) #endif #ifndef ULLONG_MAX #define ULLONG_MAX 0xFFFFFFFFFFFFFFFFULL #endif namespace { long long gcd( long long n, long long m ) // Greatest Common Divisor { if( n < 0 ) n = -n; if( m < 0 ) m = -m; while( true ) { if( m ) n %= m; else return n; if( n ) m %= n; else return m; } } const std::string overflow_string( const int n ) { if( n > 0 ) return "+INF"; if( n < 0 ) return "-INF"; return "NAN"; } int overflow_value( const long long n, const bool negate = false ) { if( negate ) { if( n > 0 ) return -INT_MAX; if( n < 0 ) return INT_MAX; return 0; } else { if( n > 0 ) return INT_MAX; if( n < 0 ) return -INT_MAX; return 0; } } } // end namespace void Rational::normalize( long long n, long long d ) { if( d == 0 ) { num = overflow_value( n ); den = 0; return; } // set error if( n == 0 ) { num = 0; den = 1; return; } if( d != 1 ) { const long long tmp = gcd( n, d ); n /= tmp; d /= tmp; } if( n <= INT_MAX && n >= -INT_MAX && d <= INT_MAX && d >= -INT_MAX ) { if( d >= 0 ) { num = n; den = d; } else { num = -n; den = -d; } } else { num = overflow_value( n, d < 0 ); den = 0; } } void Rational::normalize() { if( den == 0 ) { num = overflow_value( num ); return; } if( num == 0 ) { den = 1; return; } if( den != 1 ) { const int tmp = gcd( num, den ); num /= tmp; den /= tmp; } if( num < -INT_MAX ) { num = overflow_value( den, true ); den = 0; return; } if( den < 0 ) { if( den < -INT_MAX ) { num = overflow_value( num, true ); den = 0; return; } num = -num; den = -den; } } Rational Rational::inverse() const { if( den <= 0 ) return *this; // no op on error Rational tmp; if( num > 0 ) { tmp.num = den; tmp.den = num; } else if( num < 0 ) { tmp.num = -den; tmp.den = -num; } else { tmp.num = overflow_value( den ); tmp.den = 0; } // set error return tmp; } Rational & Rational::operator+=( const Rational & r ) { if( den <= 0 ) return *this; // no op on error if( r.den <= 0 ) { num = r.num; den = 0; return *this; } // set error const long long new_den = (long long)den * r.den; const long long new_num = ( (long long)num * r.den ) + ( (long long)r.num * den ); normalize( new_num, new_den ); return *this; } Rational & Rational::operator*=( const Rational & r ) { if( den <= 0 ) return *this; // no op on error if( r.den <= 0 ) { num = r.num; den = 0; return *this; } // set error const long long new_num = (long long)num * r.num; const long long new_den = (long long)den * r.den; normalize( new_num, new_den ); return *this; } int Rational::round() const { if( den <= 0 ) return num; int result = num / den; const int rest = std::abs( num ) % den; if( rest > 0 && rest >= den - rest ) { if( num >= 0 ) ++result; else --result; } return result; } // Recognized formats: 123 123/456 123.456 .123 12% 12/3% 12.3% .12% // Values may be preceded by an optional '+' or '-' sign. // Returns the number of chars read from 's', or 0 if input is invalid. // In case of invalid input, the Rational is not changed. // int Rational::parse( const char * const s ) { if( !s || !s[0] ) return 0; long long n = 0, d = 1; // restrain intermediate overflow int c = 0; bool minus = false; while( std::isspace( s[c] ) ) ++c; if( s[c] == '+' ) ++c; else if( s[c] == '-' ) { ++c; minus = true; } if( !std::isdigit( s[c] ) && s[c] != '.' ) return 0; while( std::isdigit( s[c] ) ) { if( ( LLONG_MAX - (s[c] - '0') ) / 10 < n ) return 0; n = (n * 10) + (s[c] - '0'); ++c; } if( s[c] == '.' ) { ++c; if( !std::isdigit( s[c] ) ) return 0; while( std::isdigit( s[c] ) ) { if( ( LLONG_MAX - (s[c] - '0') ) / 10 < n || LLONG_MAX / 10 < d ) return 0; n = (n * 10) + (s[c] - '0'); d *= 10; ++c; } } else if( s[c] == '/' ) { ++c; d = 0; while( std::isdigit( s[c] ) ) { if( ( LLONG_MAX - (s[c] - '0') ) / 10 < d ) return 0; d = (d * 10) + (s[c] - '0'); ++c; } if( d == 0 ) return 0; } if( s[c] == '%' ) { ++c; if( n % 100 == 0 ) n /= 100; else if( n % 10 == 0 && LLONG_MAX / 10 >= d ) { n /= 10; d *= 10; } else if( LLONG_MAX / 100 >= d ) d *= 100; else return 0; } if( minus ) n = -n; Rational tmp; tmp.normalize( n, d ); if( !tmp.error() ) { *this = tmp; return c; } return 0; } // Returns a string representing the value 'num/den' in decimal point // format with 'prec' decimals. // 'iwidth' is the minimum width of the integer part, prefixed with // spaces if needed. // If 'prec' is negative, only the needed decimals are produced. // const std::string Rational::to_decimal( const unsigned iwidth, int prec ) const { if( den <= 0 ) return overflow_string( num ); std::string s; int ipart = std::abs( num / den ); const bool truncate = ( prec < 0 ); if( prec < 0 ) prec = -prec; do { s += '0' + ( ipart % 10 ); ipart /= 10; } while( ipart > 0 ); if( num < 0 ) s += '-'; if( iwidth > s.size() ) s.append( iwidth - s.size(), ' ' ); std::reverse( s.begin(), s.end() ); long long rest = std::abs( num ) % den; if( prec > 0 && ( rest > 0 || !truncate ) ) { s += '.'; while( prec > 0 && ( rest > 0 || !truncate ) ) { rest *= 10; s += '0' + ( rest / den ); rest %= den; --prec; } } return s; } // Returns a string representing the value 'num/den' in fractional form. // 'width' is the minimum width to be produced, prefixed with spaces if // needed. // const std::string Rational::to_fraction( const unsigned width ) const { if( den <= 0 ) return overflow_string( num ); std::string s; int n = std::abs( num ), d = den; do { s += '0' + ( d % 10 ); d /= 10; } while( d > 0 ); s += '/'; do { s += '0' + ( n % 10 ); n /= 10; } while( n > 0 ); if( num < 0 ) s += '-'; if( width > s.size() ) s.append( width - s.size(), ' ' ); std::reverse( s.begin(), s.end() ); return s; }