/* This file is copied from the libsrs2 sources */ /* Modified by Timo Röhling */ /* NIST Secure Hash Algorithm */ /* Borrowed from SHA1.xs by Gisle Ass */ /* heavily modified by Uwe Hollerbach */ /* from Peter C. Gutmann's implementation as found in */ /* Applied Cryptography by Bruce Schneier */ /* Further modifications to include the "UNRAVEL" stuff, below */ /* HMAC functions by Shevek for inclusion in * libsrs2, under GPL-2 or BSD license. Combine this lot in any way * you think will stand up in court. I hope my intent is clear. */ /* This code is in the public domain */ /* Useful defines & typedefs */ #include "srs2.h" #include #include /* memcpy, strcpy, memset */ #include /* timeval / timezone struct */ #include /* tyepdefs */ #include /* time */ #ifdef SIZEOF_UNSIGNED_LONG # if SIZEOF_UNSIGNED_LONG < 4 # error "SHA1 requires an unsigned long of at least 32 bits" # endif #endif #if SIZEOF_UNSIGNED_LONG == 4 # ifdef WORDS_BIGENDIAN # define BYTEORDER 0x4321 # else # define BYTEORDER 0x1234 # endif #elif SIZEOF_UNSIGNED_LONG == 8 # ifdef WORDS_BIGENDIAN # define BYTEORDER 0x87654321 # else # define BYTEORDER 0x12345678 # endif #else # error "SHA1 requires an unsigned long of either 4 or 8 bytes" #endif /* UNRAVEL should be fastest & biggest */ /* UNROLL_LOOPS should be just as big, but slightly slower */ /* both undefined should be smallest and slowest */ #define SHA_VERSION 1 #define UNRAVEL /* #define UNROLL_LOOPS */ /* SHA f()-functions */ #define f1(x, y, z) ((x & y) | (~x & z)) #define f2(x, y, z) (x ^ y ^ z) #define f3(x, y, z) ((x & y) | (x & z) | (y & z)) #define f4(x, y, z) (x ^ y ^ z) /* SHA constants */ #define CONST1 0x5a827999L #define CONST2 0x6ed9eba1L #define CONST3 0x8f1bbcdcL #define CONST4 0xca62c1d6L /* truncate to 32 bits -- should be a null op on 32-bit machines */ #define T32(x) ((x)&0xffffffffL) /* 32-bit rotate */ #define R32(x, n) T32(((x << n) | (x >> (32 - n)))) /* the generic case, for when the overall rotation is not unraveled */ #define FG(n) \ T = T32(R32(A, 5) + f##n(B, C, D) + E + *WP++ + CONST##n); \ E = D; \ D = C; \ C = R32(B, 30); \ B = A; \ A = T /* specific cases, for when the overall rotation is unraveled */ #define FA(n) \ T = T32(R32(A, 5) + f##n(B, C, D) + E + *WP++ + CONST##n); \ B = R32(B, 30) #define FB(n) \ E = T32(R32(T, 5) + f##n(A, B, C) + D + *WP++ + CONST##n); \ A = R32(A, 30) #define FC(n) \ D = T32(R32(E, 5) + f##n(T, A, B) + C + *WP++ + CONST##n); \ T = R32(T, 30) #define FD(n) \ C = T32(R32(D, 5) + f##n(E, T, A) + B + *WP++ + CONST##n); \ E = R32(E, 30) #define FE(n) \ B = T32(R32(C, 5) + f##n(D, E, T) + A + *WP++ + CONST##n); \ D = R32(D, 30) #define FT(n) \ A = T32(R32(B, 5) + f##n(C, D, E) + T + *WP++ + CONST##n); \ C = R32(C, 30) static void sha_transform(SHA_INFO *sha_info) { int i; sha_byte *dp; ULONG T, A, B, C, D, E, W[80], *WP; dp = sha_info->data; /* the following makes sure that at least one code block below is traversed or an error is reported, without the necessity for nested preprocessor if/else/endif blocks, which are a great pain in the nether regions of the anatomy... */ #undef SWAP_DONE #if BYTEORDER == 0x1234 # define SWAP_DONE /* assert(sizeof(ULONG) == 4); */ for (i = 0; i < 16; ++i) { T = *((ULONG *)dp); dp += 4; W[i] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) | ((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff); } #endif #if BYTEORDER == 0x4321 # define SWAP_DONE /* assert(sizeof(ULONG) == 4); */ for (i = 0; i < 16; ++i) { T = *((ULONG *)dp); dp += 4; W[i] = T32(T); } #endif #if BYTEORDER == 0x12345678 # define SWAP_DONE /* assert(sizeof(ULONG) == 8); */ for (i = 0; i < 16; i += 2) { T = *((ULONG *)dp); dp += 8; W[i] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) | ((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff); T >>= 32; W[i + 1] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) | ((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff); } #endif #if BYTEORDER == 0x87654321 # define SWAP_DONE /* assert(sizeof(ULONG) == 8); */ for (i = 0; i < 16; i += 2) { T = *((ULONG *)dp); dp += 8; W[i] = T32(T >> 32); W[i + 1] = T32(T); } #endif #ifndef SWAP_DONE # error Unknown byte order -- you need to add code here #endif for (i = 16; i < 80; ++i) { W[i] = W[i - 3] ^ W[i - 8] ^ W[i - 14] ^ W[i - 16]; #if (SHA_VERSION == 1) W[i] = R32(W[i], 1); #endif } A = sha_info->digest[0]; B = sha_info->digest[1]; C = sha_info->digest[2]; D = sha_info->digest[3]; E = sha_info->digest[4]; WP = W; #ifdef UNRAVEL /* clang-format off */ FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); /* clang-format on */ sha_info->digest[0] = T32(sha_info->digest[0] + E); sha_info->digest[1] = T32(sha_info->digest[1] + T); sha_info->digest[2] = T32(sha_info->digest[2] + A); sha_info->digest[3] = T32(sha_info->digest[3] + B); sha_info->digest[4] = T32(sha_info->digest[4] + C); #else # ifdef UNROLL_LOOPS /* clang-format off */ FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); /* clang-format on */ # else for (i = 0; i < 20; ++i) { FG(1); } for (i = 20; i < 40; ++i) { FG(2); } for (i = 40; i < 60; ++i) { FG(3); } for (i = 60; i < 80; ++i) { FG(4); } # endif sha_info->digest[0] = T32(sha_info->digest[0] + A); sha_info->digest[1] = T32(sha_info->digest[1] + B); sha_info->digest[2] = T32(sha_info->digest[2] + C); sha_info->digest[3] = T32(sha_info->digest[3] + D); sha_info->digest[4] = T32(sha_info->digest[4] + E); #endif } /* initialize the SHA digest */ static void sha_init(SHA_INFO *sha_info) { sha_info->digest[0] = 0x67452301L; sha_info->digest[1] = 0xefcdab89L; sha_info->digest[2] = 0x98badcfeL; sha_info->digest[3] = 0x10325476L; sha_info->digest[4] = 0xc3d2e1f0L; sha_info->count_lo = 0L; sha_info->count_hi = 0L; sha_info->local = 0; } /* update the SHA digest */ static void sha_update(SHA_INFO *sha_info, sha_byte *buffer, int count) { int i; ULONG clo; clo = T32(sha_info->count_lo + ((ULONG)count << 3)); if (clo < sha_info->count_lo) { ++sha_info->count_hi; } sha_info->count_lo = clo; sha_info->count_hi += (ULONG)count >> 29; if (sha_info->local) { i = SHA_BLOCKSIZE - sha_info->local; if (i > count) { i = count; } memcpy(((sha_byte *)sha_info->data) + sha_info->local, buffer, i); count -= i; buffer += i; sha_info->local += i; if (sha_info->local == SHA_BLOCKSIZE) { sha_transform(sha_info); } else { return; } } while (count >= SHA_BLOCKSIZE) { memcpy(sha_info->data, buffer, SHA_BLOCKSIZE); buffer += SHA_BLOCKSIZE; count -= SHA_BLOCKSIZE; sha_transform(sha_info); } memcpy(sha_info->data, buffer, count); sha_info->local = count; } static void sha_transform_and_copy(unsigned char digest[20], SHA_INFO *sha_info) { sha_transform(sha_info); digest[0] = (unsigned char)((sha_info->digest[0] >> 24) & 0xff); digest[1] = (unsigned char)((sha_info->digest[0] >> 16) & 0xff); digest[2] = (unsigned char)((sha_info->digest[0] >> 8) & 0xff); digest[3] = (unsigned char)((sha_info->digest[0]) & 0xff); digest[4] = (unsigned char)((sha_info->digest[1] >> 24) & 0xff); digest[5] = (unsigned char)((sha_info->digest[1] >> 16) & 0xff); digest[6] = (unsigned char)((sha_info->digest[1] >> 8) & 0xff); digest[7] = (unsigned char)((sha_info->digest[1]) & 0xff); digest[8] = (unsigned char)((sha_info->digest[2] >> 24) & 0xff); digest[9] = (unsigned char)((sha_info->digest[2] >> 16) & 0xff); digest[10] = (unsigned char)((sha_info->digest[2] >> 8) & 0xff); digest[11] = (unsigned char)((sha_info->digest[2]) & 0xff); digest[12] = (unsigned char)((sha_info->digest[3] >> 24) & 0xff); digest[13] = (unsigned char)((sha_info->digest[3] >> 16) & 0xff); digest[14] = (unsigned char)((sha_info->digest[3] >> 8) & 0xff); digest[15] = (unsigned char)((sha_info->digest[3]) & 0xff); digest[16] = (unsigned char)((sha_info->digest[4] >> 24) & 0xff); digest[17] = (unsigned char)((sha_info->digest[4] >> 16) & 0xff); digest[18] = (unsigned char)((sha_info->digest[4] >> 8) & 0xff); digest[19] = (unsigned char)((sha_info->digest[4]) & 0xff); } /* finish computing the SHA digest */ static void sha_final(unsigned char digest[20], SHA_INFO *sha_info) { int count; ULONG lo_bit_count, hi_bit_count; lo_bit_count = sha_info->count_lo; hi_bit_count = sha_info->count_hi; count = (int)((lo_bit_count >> 3) & 0x3f); ((sha_byte *)sha_info->data)[count++] = 0x80; if (count > SHA_BLOCKSIZE - 8) { memset(((sha_byte *)sha_info->data) + count, 0, SHA_BLOCKSIZE - count); sha_transform(sha_info); memset((sha_byte *)sha_info->data, 0, SHA_BLOCKSIZE - 8); } else { memset(((sha_byte *)sha_info->data) + count, 0, SHA_BLOCKSIZE - 8 - count); } sha_info->data[56] = (hi_bit_count >> 24) & 0xff; sha_info->data[57] = (hi_bit_count >> 16) & 0xff; sha_info->data[58] = (hi_bit_count >> 8) & 0xff; sha_info->data[59] = (hi_bit_count >> 0) & 0xff; sha_info->data[60] = (lo_bit_count >> 24) & 0xff; sha_info->data[61] = (lo_bit_count >> 16) & 0xff; sha_info->data[62] = (lo_bit_count >> 8) & 0xff; sha_info->data[63] = (lo_bit_count >> 0) & 0xff; sha_transform_and_copy(digest, sha_info); } /********************************************************************/ /* SHA_INFO ctx; unsigned char *data; STRLEN len; unsigned char digeststr[20]; sha_init(&ctx); for (i = 0; i < items; i++) { data = (unsigned char *)(SvPVbyte(ST(i), len)); sha_update(&ctx, data, len); } sha_final(digeststr, &ctx); */ static void sha_digest(char *out, char *data, unsigned len) { SHA_INFO ctx; sha_init(&ctx); sha_update(&ctx, (sha_byte *)data, len); sha_final((sha_byte *)out, &ctx); } void srs_hmac_init(srs_hmac_ctx_t *ctx, char *secret, unsigned len) { char sbuf[SHA_BLOCKSIZE]; unsigned i; if (len > SHA_BLOCKSIZE) { sha_digest(sbuf, secret, len); secret = sbuf; len = SHA_DIGESTSIZE; } memset(ctx->ipad, 0x36, SHA_BLOCKSIZE); memset(ctx->opad, 0x5c, SHA_BLOCKSIZE); for (i = 0; i < len; i++) { ctx->ipad[i] ^= secret[i]; ctx->opad[i] ^= secret[i]; } memset(sbuf, 0, SHA_BLOCKSIZE); sha_init(&ctx->sctx); sha_update(&ctx->sctx, (sha_byte *)ctx->ipad, SHA_BLOCKSIZE); } void srs_hmac_update(srs_hmac_ctx_t *ctx, char *data, unsigned len) { sha_update(&ctx->sctx, (sha_byte *)data, len); } void srs_hmac_fini(srs_hmac_ctx_t *ctx, char *out) { sha_byte buf[SHA_DIGESTSIZE + 1]; sha_final(buf, &ctx->sctx); sha_init(&ctx->sctx); sha_update(&ctx->sctx, (sha_byte *)ctx->opad, SHA_BLOCKSIZE); sha_update(&ctx->sctx, buf, SHA_DIGESTSIZE); sha_final((sha_byte *)out, &ctx->sctx); }